Separability of the 2D Particle in a Circle Problem

If we don't assume that the 2 D rigid rotor has a fixed " r " then we are solving the particle-in-a-circle problem. It's just like a particle in a 2D box except the box is round.

This problem still uses cylindrical coordinates and is of the form $\widehat{H} \Psi=E \cdot \Psi$

$$
\frac{-\hbar^{2}}{2 \cdot \operatorname{mass}}\left(\frac{\partial^{2}}{\partial \mathrm{r}^{2}}+\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}+\frac{1}{\mathrm{r}^{2}} \frac{\partial^{2}}{\partial \phi^{2}}\right) \Psi=\mathrm{E} \cdot \Psi
$$

We assumed that $\Psi(\mathrm{r}, \phi)=\Psi(\mathrm{r}) \cdot \Psi(\phi)$, i.e. the solution is separable. Can you show that the Hamiltonian above is in fact separable?
Answer: First, bring over the constants:

$$
\left(\frac{\partial^{2}}{\partial \mathrm{r}^{2}}+\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}+\frac{1}{\mathrm{r}^{2}} \frac{\partial^{2}}{\partial \phi^{2}}\right) \Psi=\left(\frac{2 \cdot \text { mass }}{-\hbar^{2}} \mathrm{E}\right) \cdot \Psi
$$

And apply the separated wavefunction on the right and divide by the same on the left:

$$
\begin{aligned}
& \frac{1}{\Psi(\mathrm{r}) \cdot \Psi(\phi)}\left(\frac{\partial^{2}}{\partial \mathrm{r}^{2}}+\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}+\frac{1}{\mathrm{r}^{2}} \frac{\partial^{2}}{\partial \phi^{2}}\right) \Psi(\mathrm{r}) \cdot \Psi(\phi)=\frac{1}{\Psi(\mathrm{r}) \cdot \Psi(\phi)}\left(\frac{2 \cdot \mathrm{mass}}{-\hbar^{2}} \mathrm{E}\right) \cdot \Psi(\mathrm{r}) \cdot \Psi(\phi) \\
& \frac{\Psi(\phi)}{\Psi(\mathrm{r}) \cdot \Psi(\phi)} \frac{\partial^{2} \Psi(\mathrm{r})}{\partial \mathrm{r}^{2}}+\frac{\Psi(\phi)}{\Psi(\mathrm{r}) \cdot \Psi(\phi) \cdot \mathrm{r}} \frac{\partial \Psi(\mathrm{r})}{\partial \mathrm{r}}+\frac{\Psi(\mathrm{r})}{\Psi(\mathrm{r}) \cdot \Psi(\phi) \cdot \mathrm{r}^{2}} \frac{\partial^{2} \Psi(\phi)}{\partial \phi^{2}}=\left(\frac{2 \cdot \text { mass }}{-\hbar^{2}} \mathrm{E}\right)
\end{aligned}
$$

Simplify a bit more:

$$
\frac{1}{\Psi(r)} \frac{\partial^{2} \Psi(r)}{\partial r^{2}}+\frac{1}{\Psi(r) \cdot r} \frac{\partial \Psi(r)}{\partial r}+\frac{1}{\Psi(\phi) \cdot r^{2}} \frac{\partial^{2} \Psi(\phi)}{\partial \phi^{2}}=\left(\frac{2 \cdot \text { mass }}{-\hbar^{2}} \mathrm{E}\right)
$$

Now multiply by r^{2} :

$$
\frac{r^{2}}{\Psi(r)} \frac{\partial^{2} \Psi(r)}{\partial r^{2}}+\frac{r}{\Psi(r)} \frac{\partial \Psi(r)}{\partial r}+\frac{1}{\Psi(\phi)} \frac{\partial^{2} \Psi(\phi)}{\partial \phi^{2}}=\left(\frac{2 \cdot \text { mass }}{-\hbar^{2}} E\right) \cdot r^{2}
$$

And you can now bring the Energy term to the right to group it with the radial part:

$$
\left(\frac{r^{2}}{\Psi(r)} \frac{\partial^{2} \Psi(r)}{\partial r^{2}}+\frac{r}{\Psi(r)} \frac{\partial \Psi(r)}{\partial r}+\frac{2 \cdot \text { mass }}{\hbar^{2}} E \cdot r^{2}\right)+\left(\frac{1}{\Psi(\phi)} \frac{\partial^{2} \Psi(\phi)}{\partial \phi^{2}}\right)=0
$$

You are now left with two differential equations:

$$
\frac{1}{\Psi(\phi)} \frac{\partial^{2} \Psi(\phi)}{\partial \phi^{2}}
$$

and:

$$
\frac{r^{2}}{\Psi(r)} \frac{\partial^{2} \Psi(r)}{\partial r^{2}}+\frac{r}{\Psi(r)} \frac{\partial \Psi(r)}{\partial r}+\frac{2 \cdot \text { mass }}{\hbar^{2}} E \cdot r^{2}
$$

the sum of which is equal to a constant, which is 0 .

Angular Part:

If we assume that $\Psi(\phi)=e^{i \cdot m \cdot \phi}$, the first mini-Schrodinger equation is:

$$
\frac{1}{\Psi(\phi)} \frac{\partial^{2} \Psi(\phi)}{\partial \phi^{2}}=\frac{1}{e^{i \cdot m} \cdot \phi} \frac{\partial^{2} e^{i \cdot m} \cdot \phi}{\partial \phi^{2}}=\frac{-m^{2}}{e^{i \cdot m} \cdot \phi} \mathrm{e}^{i \cdot m \cdot \phi}=-m^{2}
$$

There isn't anything else to examine with this part of the problem, especially because the radial one is the part that determines the energy.

Radial Part:

We are left with the radial equation:

$$
\frac{r^{2}}{\Psi(r)} \frac{\partial^{2} \Psi(r)}{\partial r^{2}}+\frac{r}{\Psi(r)} \frac{\partial \Psi(r)}{\partial r}+\frac{2 \cdot \text { mass }}{\hbar^{2}} E \cdot r^{2}=m^{2}
$$

where m is still $0, \pm 1, \pm 2$, etc. Note how the radial is equal to $+\mathrm{m}^{2}$, so it can effectively "wipe out" the effect of the rotational energy and still yield the total energy E. You can make it look more like a Schrodinger equation by bringing $\Psi(r)$ over to the right:

$$
r^{2} \frac{\partial^{2} \Psi(r)}{\partial r^{2}}+r \frac{\partial \Psi(r)}{\partial r}=\left(m^{2}-\frac{2 \cdot \text { mass }}{\hbar^{2}} E \cdot r^{2}\right) \Psi(r)
$$

The solution $\Psi_{m}(\mathrm{r})$ is called a Bessel function, which is like an "erf" in that there isn't a simple analytical way to express it. There is a solution for $\Psi_{m}(r)$ for every value of m. Shown here are a few Bessel functions, were you can see a different wavefunction for every m value. To solve the energy, you have to know where $\Psi_{m}(\mathrm{r})=0$ (a
 boundary condition), which then gives you the energy. The graph below shows that $\Psi_{m=0}(\mathrm{r})=0$ for the $\mathrm{m}=0$ state occurs at $\mathrm{r}=2.4048$. This allows you to calculate its energy via: $\mathrm{E}_{0}=\frac{\hbar^{2}}{2 \cdot \text { mass }}\left(\frac{2.4048}{\text { radius }}\right)^{2}$, where the radius of the box is the boundary condition.

References:

Bessel function adapted from: By Inductiveload - Own work, made with Inkscape, Public Domain, https://commons.wikimedia.org/w/index.php?curid=3564725

