Region II

The centered box has wavefunctions that vary between cosine (the ground state and subsequent higher states) and sine, and are in a region with no potential energy. Thus, they have the form (for example), $\psi_{I I}=A \cdot \cos \left(k_{2} \cdot x\right)$, where $k_{2}=\sqrt{2 m E} / \hbar$. The wavefunction in Region III is $\psi_{I I I}=B \cdot \exp \left(i \cdot k_{1} \cdot x\right)$, however, since we are only interested in wavefunctions with energies less than $\mathrm{V}, k_{1}=i \sqrt{2 m(V-E)} / \hbar$. As a result, $\psi_{I I I}=B \cdot \exp \left(-k_{1} \cdot x\right)$.
Note that Region I is basically identical to Region III, and thus $\psi_{I}=B \cdot \exp \left(k_{1} \cdot x\right)$, where the argument of the exponential is positive because the x 's are negative in Region I.

For the ground \sim cosine state, starting with the stipulation of smooth and continuous:
Region II\&III: Wavefunctions are equal: $A \cdot \cos \left(k_{2}\left(\frac{L}{2}\right)\right)=B \cdot \exp \left(-k_{1}\left(\frac{L}{2}\right)\right)$
Region II\&III: Derivatives are equal: $-A \cdot k_{2} \cdot \sin \left(k_{2}\left(\frac{L}{2}\right)\right)=-B \cdot k_{1} \cdot \exp \left(-k_{1}\left(\frac{L}{2}\right)\right)$
Divide the two: $\frac{A \cdot \cos \left(k_{2}\left(\frac{L}{2}\right)\right)}{-A \cdot k_{2} \cdot \sin \left(k_{2}\left(\frac{L}{2}\right)\right)}=\frac{B \cdot \exp \left(-k_{1}\left(\frac{L}{2}\right)\right)}{-B \cdot k_{1} \cdot \exp \left(-k_{1}\left(\frac{L}{2}\right)\right)}$
Therefore: $\frac{-1}{k_{2}} \operatorname{cotan}\left(k_{2}\left(\frac{L}{2}\right)\right)=\frac{1}{k_{1}}$; insert the definitions of k 's:

$$
\begin{equation*}
\operatorname{cotan}\left(\frac{\sqrt{2 m E}}{\hbar}\left(\frac{L}{2}\right)\right)=\frac{\sqrt{2 m E} / \hbar}{\sqrt{2 m(V-E)} / \hbar}=\frac{\sqrt{E}}{\sqrt{(V-E)}} \tag{1}
\end{equation*}
$$

For the first excited ~sine state(s), starting with the stipulation of smooth and continuous:
Region II\&III: Wavefunctions are equal: $A \cdot \sin \left(k_{2}\left(\frac{L}{2}\right)\right)=B \cdot \exp \left(-k_{1}\left(\frac{L}{2}\right)\right)$
Region II\&III: Derivatives are equal: $A \cdot k_{2} \cdot \cos \left(k_{2}\left(\frac{L}{2}\right)\right)=-B \cdot k_{1} \cdot \exp \left(-k_{1}\left(\frac{L}{2}\right)\right)$
Divide the two: $\frac{A \cdot \sin \left(k_{2}\left(\frac{L}{2}\right)\right)}{A \cdot k_{2} \cdot \cos \left(k_{2}\left(\frac{L}{2}\right)\right)}=\frac{B \cdot \exp \left(-k_{1}\left(\frac{L}{2}\right)\right)}{-B \cdot k_{1} \cdot \exp \left(-k_{1}\left(\frac{L}{2}\right)\right)}$
Therefore: $\frac{1}{k_{2}} \tan \left(k_{2}\left(\frac{L}{2}\right)\right)=\frac{-1}{k_{1}}$; insert the definitions of k's:

$$
\begin{equation*}
\tan \left(\frac{\sqrt{2 m E}}{\hbar}\left(\frac{L}{2}\right)\right)=\frac{-\sqrt{2 m E} / \hbar}{\sqrt{2 m(V-E)} / \hbar}=\frac{-\sqrt{E}}{\sqrt{(V-E)}} \tag{2}
\end{equation*}
$$

The same operations can be performed between Regions I\&II, but these lead to the exact same results in terms of eqs. (1) \& (2).

Now we can define energy by finding the E that satisfies equations (1) and (2), which has to be done using some computer program like Matlab or Origin.

