Solution to the Finite Barrier Problem

The finite barrier problem helps us understand that a particle can pass though a barrier that it doesn't have enough energy to pass through. Likewise, sometimes the particle will "bounce back" from hitting a barrier even if it has enough energy to overcome it.

The potential surface is as follows:

It must be noted that the general solution to the wavefunction in the middle barrier depends on whether the energy is greater or less than the potential energy. If $\mathrm{E}<\mathrm{V}$, then $k_{2}=\sqrt{2 m(E-V)} / \hbar^{2}=\sqrt{-2 m(V-E)} / \hbar^{2}=i \sqrt{2 m(V-E)} / \hbar^{2}$ since $E-V$ is negative in this case. As a result, the "general solution" wavefunction that is applicable if $\mathrm{E}>\mathrm{V}$:
$\psi_{I I}=C e^{i k_{2} x}+D e^{-i k_{2} x}$
becomes: $\psi_{I I}=C e^{-k_{2} x}+D e^{k_{2} x}$ when $\mathrm{E}<\mathrm{V}$. Thus, we have to solve the transmission probability as a function of whether the energy is greater or less than the potential energy.

In region I, the incoming " A " wave can reflect after hitting a wall to create a " B " wave:
$\psi_{I}=A e^{i k_{1} x}+B e^{-i k_{1} x}$
However, in region III, if the particle passes through the barrier it will travel to the right forever, so there is no need to have any wave except a right-moving "E" wave:
$\psi_{I I I}=E e^{i k_{1} x}$. Note that the momentum k_{1} is the same as in region I.

Transmission, $\mathrm{E}<\mathrm{V}$
 @X=0

Continuous (the wavefunctions are equal):
$A e^{i k_{1} x}+B e^{-i k_{1} x}=C e^{-k_{2} x}+D e^{k_{2} x}$
Since $x=0$:
$A+B=C+D$
Smooth (the derivatives are equal):
$i k_{1} A e^{i k_{1} x}-i k_{1} B e^{-i k_{1} x}=-k_{2} C e^{-k_{2} x}+k_{2} D e^{k_{2} x}$
Since $x=0$:
$i k_{1} A-i k_{1} B=-k_{2} C+k_{2} D$
Now the strategy is to define A in terms of C and D by eliminating B :
since $B=C+D-A$, insert this into (2):

$$
\begin{align*}
& \frac{\infty}{0} \tag{3}\\
& \frac{1}{0} k_{1} A-i k_{1}(C+D-A)=-k_{2} C+k_{2} D \\
& i k_{1} A-i k_{1} C-i k_{1} D+i k_{1} A=-k_{2} C+k_{2} D \\
& \hline \overline{\#} \\
& 2 i k_{1} A=-k_{2} C+k_{2} D+i k_{1} C+i k_{1} D \\
& 2 i k_{1} A=-C\left(k_{2}+i k_{1}\right)+D\left(k_{2}-i k_{1}\right)
\end{align*}
$$

Now we just have to define C and D in terms of E to determine $\frac{E}{A}$. To do this we have to look at the $\mathrm{x}=\mathrm{L}$ side.
@X=L

Continuous (the wavefunctions are equal):
$C e^{-k_{2} L}+D e^{k_{2} L}=E e^{i k_{1} L}$
Now we will solve for C in terms of E by eliminating D :
$D e^{k_{2} L}=E e^{i k_{1} L}-C e^{-k_{2} L}$ and by multiplying by $e^{-k_{2} L}$:
$D=E e^{i k_{1} L} e^{-k_{2} L}-C e^{-2 k_{2} L}$
Smooth (the derivatives are equal):

$$
\begin{equation*}
-k_{2} C e^{-k_{2} L}+k_{2} D e^{k_{2} L}=i k_{1} E e^{i k_{1} L} \tag{5}
\end{equation*}
$$

Insert (4) into (5):
$-k_{2} C e^{-k_{2} L}+k_{2}\left(E e^{i k_{1} L} e^{-k_{2} L}-C e^{-2 k_{2} L}\right) e^{k_{2} L}=i k_{1} E e^{i k_{1} L}$
Now just do a lot of factoring to get C in terms of E :

Done! Now we have to start over to solve D in terms of E.
Continuous (the wavefunctions are equal):
$C e^{-k_{2} L}+D e^{k_{2} L}=E e^{i k_{1} L}$
Now we will solve for D in terms of E by eliminating C :
$C e^{-k_{2} L}=E e^{i k_{1} L}-D e^{k_{2} L}$ and by multiplying by $e^{k_{2} L}$:
$C=E e^{i k_{1} L} e^{k_{2} L}-D e^{2 k_{2} L}$
Now we can insert eq. (6) into (7), but instead I will do this in a more analogous manner as above because I am comfortable with this route at this point.

Using the fact that the equations are smooth (the derivatives are equal):
$-k_{2} C e^{-k_{2} L}+k_{2} D e^{k_{2} L}=i k_{1} E e^{i k_{1} L}$
Insert (7) into (5):
$-k_{2}\left(E e^{i k_{1} L} e^{k_{2} L}-D e^{2 k_{2} L}\right) e^{-k_{2} L}+k_{2} D e^{k_{2} L}=i k_{1} E e^{i k_{1} L}$
Now just do a lot of factoring to get D in terms of E :
$-E k_{2} e^{i k_{1} L} e^{k_{2} L} e^{-k_{2} L}+D k_{2} e^{2 k_{2} L} e^{-k_{2} L}+k_{2} D e^{k_{2} L}=i k_{1} E e^{i k_{1} L}$
$k_{2} D e^{k_{2} L}+k_{2} D e^{k_{2} L}=i k_{1} E e^{i k_{1} L}+k_{2} E e^{i k_{1} L}=E e^{i k_{1} L}\left(k_{2}+i k_{1}\right)$

$$
\begin{equation*}
D=E \frac{e^{i k_{1} L}\left(k_{2}+i k_{1}\right)}{2 k_{2} e^{k_{2} L}} \tag{8}
\end{equation*}
$$

Now we are going to take equation (3):

$$
2 i k_{1} A=-C\left(k_{2}+i k_{1}\right)+D\left(k_{2}-i k_{1}\right)
$$

And plug in eq. (6) for $C=E \frac{e^{i k_{1} L}\left(k_{2}-i k_{1}\right)}{2 k_{2} e^{-k_{2} L}}$ and (8) for $D=E \frac{e^{i k_{1} L}\left(k_{2}+i k_{1}\right)}{2 k_{2} e^{k_{2} L}}$:
$2 i k_{1} A=-E \frac{e^{i k_{1} L}\left(k_{2}-i k_{1}\right)}{2 k_{2} e^{-k_{2} L}}\left(k_{2}+i k_{1}\right)+E \frac{e^{i k_{1} L}\left(k_{2}+i k_{1}\right)}{2 k_{2} e^{k_{2} L}}\left(k_{2}-i k_{1}\right)$
Now we just try to simplify and factor variables out the wazoo:

Here is about as far as I can take it in terms of factoring:

$$
\begin{equation*}
\frac{E}{A}=\frac{4 i k_{1} k_{2} e^{-i k_{1} L}}{e^{-k_{2} L}\left(k_{2}+i k_{1}\right)^{2}-e^{k_{2} L}\left(k_{2}-i k_{1}\right)^{2}} \tag{9}
\end{equation*}
$$

Transmission, E>V
 @X=0

Continuous (the wavefunctions are equal):
$A e^{i k_{1} x}+B e^{-i k_{1} x}=C e^{i k_{2} x}+D e^{-i k_{2} x}$
Since $x=0$:
$A+B=C+D$
Smooth (the derivatives are equal):
$i k_{1} A e^{i k_{1} x}-i k_{1} B e^{-i k_{1} x}=i k_{2} C e^{i k_{2} x}-i k_{2} D e^{-i k_{2} x}$
Since $x=0$:
$i k_{1} A-i k_{1} B=i k_{2} C-i k_{2} D \quad$ Note we can eliminate all the i's:
$k_{1} A-k_{1} B=k_{2} C-k_{2} D$
Now the strategy is to define A in terms of C and D by eliminating B :
since $B=C+D-A$, which we insert into (2):

$$
\begin{align*}
& \text { の. } \tag{3}\\
& k_{1} A-k_{1}(C+D-A)=k_{2} C-k_{2} D \\
& k_{1} A-k_{1} C-k_{1} D+k_{1} A=k_{2} C-k_{2} D \\
& 2 k_{1} A=k_{2} C-k_{2} D+k_{1} C+k_{1} D \\
& 2 k_{1} A=C\left(k_{2}+k_{1}\right)-D\left(k_{2}-k_{1}\right)
\end{align*}
$$

Now we just have to define C and D in terms of E to determine $\frac{E}{A}$. To do this we have to look at the $\mathrm{x}=\mathrm{L}$ side.

$$
@ X=L
$$

Continuous (the wavefunctions are equal):
$C e^{i k_{2} L}+D e^{-i k_{2} L}=E e^{i k_{1} L}$
Now we will solve for C in terms of E by eliminating D :
$D e^{-i k_{2} L}=E e^{i k_{1} L}-C e^{i k_{2} L}$ and by multiplying by $e^{i k_{2} L}$:
$D=E e^{i k_{1} L} e^{i k_{2} L}-C e^{2 i k_{2} L}$

Smooth (the derivatives are equal):
$k_{2} C e^{i k_{2} L}-k_{2} D e^{-i k_{2} L}=k_{1} E e^{i k_{1} L}$
Insert (4) into (5):
$k_{2} C e^{i k_{2} L}-k_{2}\left(E e^{i k_{1} L} e^{i k_{2} L}-C e^{2 i k_{2} L}\right) e^{-i k_{2} L}=k_{1} E e^{i k_{1} L}$
Now just do a lot of factoring to get C in terms of E :

Done! Now we have to start over to solve D in terms of E .
Continuous (the wavefunctions are equal):
$C e^{i k_{2} L}+D e^{-i k_{2} L}=E e^{i k_{1} L}$
Now we will solve for D in terms of E by eliminating C :
$C e^{i k_{2} L}=E e^{i k_{1} L}-D e^{-i k_{2} L}$ and by multiplying by $e^{-i k_{2} L}$:
$C=E e^{i k_{1} L} e^{-i k_{2} L}-D e^{-i k_{2} L} e^{-i k_{2} L}=E e^{i\left(k_{1}-k_{2}\right) L}-D e^{-2 i k_{2} L}$
Now we can insert eq. (6) into (7), but instead I will do this in a more analogous manner as above because I am comfortable with this route at this point.

Using the fact that the equations are smooth (the derivatives are equal):
$k_{2} C e^{i k_{2} L}-k_{2} D e^{-i k_{2} L}=k_{1} E e^{i k_{1} L}$
Insert (7) into (5):
$k_{2}\left(E e^{i\left(k_{1}-k_{2}\right) L}-D e^{-2 i k_{2} L}\right) e^{i k_{2} L}-k_{2} D e^{-i k_{2} L}=k_{1} E e^{i k_{1} L}$

Now just do a lot of factoring to get D in terms of E :

$$
\begin{aligned}
& \text { ๓. } \int k_{2} E e^{i\left(k_{1}-k_{2}\right) L} e^{i k_{2} L}-k_{2} D e^{-2 i k_{2} L} e^{i k_{2} L}-k_{2} D e^{-i k_{2} L}=k_{1} E e^{i k_{1} L}
\end{aligned}
$$

$$
\begin{align*}
& k_{2} D e^{-i k_{2} L}+k_{2} D e^{-i k_{2} L}=-k_{1} E e^{i k_{1} L}+k_{2} E e^{i k_{1} L} \\
& 2 k_{2} D e^{-i k_{2} L}=E e^{i k_{1} L}\left(k_{2}-k_{1}\right) \\
& D=E \frac{e^{i k_{1} L\left(k_{2}-k_{1}\right)}}{2 k_{2} e^{-i k_{2} L}} \tag{8}
\end{align*}
$$

Now we are going to take equation (3):
$2 k_{1} A=C\left(k_{2}+k_{1}\right)-D\left(k_{2}-k_{1}\right)$
And plug in eq. (6) for $C=E \frac{e^{i k_{1} L}\left(k_{1}+k_{2}\right)}{2 k_{2} e^{i k_{2} L}}$ and (8) for $D=E \frac{e^{i k_{1} L}\left(k_{2}-k_{1}\right)}{2 k_{2} e^{-i k_{2} L}}$:
$2 k_{1} A=E \frac{e^{i k_{1} L}\left(k_{1}+k_{2}\right)}{2 k_{2} e^{i k_{2} L}}\left(k_{2}+k_{1}\right)-E \frac{e^{i k_{1} L}\left(k_{2}-k_{1}\right)}{2 k_{2} e^{-i k_{2} L}}\left(k_{2}-k_{1}\right)$
Now we just try to simplify and factor variables out the wazoo:

$$
\begin{aligned}
& \frac{\varrho}{\overline{3}} \\
& \overline{0} \\
& \overline{\bar{̄}} \\
& 2 k_{1} A=E \frac{e^{i k_{1} L}\left(k_{1}+k_{2}\right)}{2 k_{2} e^{i k_{2} L}}\left(k_{2}+k_{1}\right)-E \frac{e^{i k_{1} L}\left(k_{2}-k_{1}\right)}{2 k_{2} e^{-i k_{2} L}}\left(k_{2}-k_{1}\right) \\
& 2 k_{1} A=E \frac{e^{i k_{1} L}}{2 k_{2}}\left(e^{-i k_{2} L}\left(k_{1}+k_{2}\right)^{2}-e^{i k_{2} L}\left(k_{2}-k_{1}\right)^{2}\right) \\
& \frac{2 k_{1}}{\bar{O}} \cdot \frac{E}{A}=\frac{e^{i k_{1} L}}{2 k_{2}}\left(e^{-i k_{2} L}\left(k_{1}+k_{2}\right)^{2}-e^{i k_{2} L}\left(k_{2}-k_{1}\right)^{2}\right)
\end{aligned}
$$

Here is about as far as I can take it in terms of factoring:

$$
\begin{equation*}
\frac{E}{A}=\frac{4 k_{1} k_{2} e^{-i k_{1} L}}{\left(e^{-i k_{2} L}\left(k_{1}+k_{2}\right)^{2}-e^{i k_{2} L}\left(k_{2}-k_{1}\right)^{2}\right)} \tag{9}
\end{equation*}
$$

On the next page we will fit these results (the \%T as a function of energy above and below the barrier) together in a graph.

Results!

Now we take the two equations for the \%T, where energy is below and above the potential energy barrier, and plot them together using Matlab. To simulate a real particle the following parameters were used:
mass $=$ an electron $=9.109 \times 10^{-31} \mathrm{~kg}$, Length $=1 \mathrm{~nm}=1 \times 10^{-9} \mathrm{~m}$
So this is an electron hitting a~1 nm barrier. Note that the classical \%T is just 0 if the particle's energy is below the barrier and 100% if it has more energy than the barrier (dotted line). However, we can see via $\frac{|E|^{2}}{|A|^{2}}$ that quantum mechanics stipulates that there is a finite chance of passing through the barrier even though the particle doesn't have enough energy to do so!

Note that the \%T is shown for three barriers of increasing strength. Notice how, in the case of a large barrier (red line), that increasing the energy varies from "helping" the electron cross the barrier, then minimizes, and then increases the \%T a few times as the particle has greater kinetic energy.

Here are 3-D plots that represent the same:

