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Chapter 14. Multidimensional Quantum Mechanics and Rotation 

 We have focused on single dimensional systems thus far in our discussion of quantum 

mechanics. However, the Universe is three-dimensional, and as such we need to study 3D 

quantum mechanics. To begin this chapter we will show that the inclusion of extra 

dimensionality causes an unfortunate increase in complexity of the kinetic energy operator. And 

while this is not terribly difficult for a particle in a box problem (or we should rather say particle 

in a cube), it can become onerous once we start to work with spherical objects such as atoms. 

You will see when we start describing rotating quantum particles in the 2nd half of this chapter. 

Regardless of the nature of our model problems, one of the most important results is the fact that 

multidimensionality introduces energetic degeneracy (two or more quantum states with the same 

energy). Degeneracies have significant impact on many areas of science as they have a 

substantial effect on the physical properties of chemicals and materials.  

14.1 Multidimensional Free waves and the Particle in a Cube. We begin our 

understanding on multidimensional quantum mechanics with the kinetic energy operator 

−ℏ2

2∙mass

∂2

∂x2, as most of the complexity of quantum mechanics originates from here as we saw back 

in Ch. 12. The operator must be augmented with additional terms, likely the same expression 

except with y: 
−ℏ2

2∙mass

∂2

∂y2 and z: 
−ℏ2

2∙mass

∂2

∂𝑧2. Now the question is how- are these terms added into 

the operator? Or do they all multiply? Let’s use an analogy- recalling the equipartition theorem 

from your earlier introduction to thermodynamics, the energy of a particle increases by ½kBT for 

every degree of freedom that particle has. The ability of a particle to move in x, y and z counted 

as three degrees of freedom, and as a result all the ½kBT energies were summed. This leads us to 

conclude that the kinetic energy operator must likewise sum energies for each accessible 

dimension, which is:  

−ℏ2

2m
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
) 

This expression is the full 3D kinetic energy operator, and we will use it to revisit our old 

problems of the freewave and particle in a box once we know a little bit more about how to solve 

the wavefunctions. 

14.1.1. Multidimensional wavefunctions and separability in the 3D freewave problem. 

With the kinetic energy operator in hand, let’s solve a simple system such as the freewave in 3D, 
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which describes a particle that moves in any direction, forever, without encountering any 

potential energy. The Schrodinger equation for the 3D freewave is then: 

−ℏ2

2m
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)Ψ(x, y, z) = 𝐸 ∙ Ψ(x, y, z) 

To make further progress we must know more about the total wavefunction Ψ(x, y, z). Could it 

be a simple summation of “mini” wavefunctions in different dimensions: Ψ(x, y, z) = Ψx(x) +

Ψy(y) + Ψz(z) or perhaps they multiply: Ψ(x, y, z) = Ψx(x) ∙ Ψy(y) ∙ Ψz(z)? Instead of 

guessing, we can review some mathematical principles of differential equations to resolve 

between the two possibilities. 

Separability is a method for solving differential equations, and what it means is that the 

Hamiltonian can be cast into a form whereby distinct terms that contain only an x, y or z are 

added or subtracted. A separable Hamiltonian is significantly easier to solve, and fortunately 

most (but not all) operators are in fact separable. To check for separability, first act on a 

wavefunction to the right of the Hamiltonian: �̂�Ψ and then divide it out on the left: 
1

Ψ
�̂�Ψ. What 

you are trying to see is if you can write out the Hamiltonian as: 

1

Ψx(x) ∙ Ψy(y) ∙ Ψz(z)
Ĥ Ψx(x) ∙ Ψy(y) ∙ Ψz(z) = ~{𝑥 𝑡𝑒𝑟𝑚𝑠} + {𝑦 𝑡𝑒𝑟𝑚𝑠} + {𝑧 𝑡𝑒𝑟𝑚𝑠} 

and, if so, then the total wavefunction is: Ψ(x, y, z) = Ψx(x) ∙ Ψy(y) ∙ Ψz(z). 

Separability has two consequences. First, the wavefunction cannot look like Ψ(x, y, z) ≈

sin(kxx + kyy + kzz) or ei∙k𝑥∙x + ei∙k𝑦∙y + ei∙k𝑧∙z. Second, the method of separability gives us a 

way to solve the Schrodinger equation as each of the terms becomes a smaller and easier 

differential equation. Beginning with the definition of separability: 

1

Ψx(x) ∙ Ψy(y) ∙ Ψz(z)
(
−ℏ2

2m
)(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
) Ψx(x) ∙ Ψy(y) ∙ Ψz(z) = 

1

Ψx(x) ∙ Ψy(y) ∙ Ψz(z)
(
−ℏ2

2m
)

∂2

∂x2
Ψx(x) ∙ Ψy(y) ∙ Ψz(z) + 

1

Ψx(x) ∙ Ψy(y) ∙ Ψz(z)
(
−ℏ2

2m
)

∂2

∂y2
Ψ(x) ∙ Ψ(𝑦) ∙ Ψ(𝑧) + 

1

Ψx(x) ∙ Ψy(y) ∙ Ψz(z)
(
−ℏ2

2m
)

∂2

∂𝑧2
Ψx(x) ∙ Ψy(y) ∙ Ψz(z) 
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One simple rule of calculus is concerning derivatives is that functions of other variables are not 

“caught up” by the derivative operation, i.e. 
∂

∂x
f(x)f(y) = f(y)

∂f(x)

∂x
. When we apply that to the 1st 

term above we find:  

1

Ψx(x) ∙ Ψy(y) ∙ Ψz(z)
(
−ℏ2

2m
)

∂2

∂x2
Ψx(x) ∙ Ψy(y) ∙ Ψz(z) =

Ψy(y) ∙ Ψz(z)

Ψx(x) ∙ Ψy(y) ∙ Ψz(z)
(
−ℏ2

2m
)

∂2

∂x2
Ψx(x) 

which simplifies to 
1

Ψx(x)
(
−ℏ2

2m
)

∂2Ψ(x)

∂x2
. Appling these across-the-board yields:  

{
1

Ψx(x)
(
−ℏ2

2m
)
∂2Ψx(x)

∂x2
} + {

1

Ψy(y)
(
−ℏ2

2m
)

∂2Ψy(y)

∂𝑦2
} + {

1

Ψz(z)
(
−ℏ2

2m
)

∂2Ψz(z)

∂𝑧2
} 

Success! We see three distinct terms, whereby only an x appears in the 1st one and so on. 

Furthermore, each term is now a min-Schrodinger equation to be solved. The last step is to 

realize that all three terms add up to the energy. You can see this starting with: ĤΨ = EΨ and 

dividing out the wavefunction on the left 
1

Ψ
ĤΨ =

1

Ψ
EΨ =

Ψ

Ψ
E = E. Since each term adds to a 

constant (the energy), then each term must be a constant in its own right. As a result, we divide 

the energy into three parts, one for x, for y and for z as: E = Ex + Ey + Ez, and then give each 

energy to the corresponding term (and using a little algebra to bring the wavefunctions to the 

right): 

(
−ℏ2

2m
)

∂2

∂x2
Ψx(x) = ExΨx(x) 

(
−ℏ2

2m
)

∂2

∂y2
Ψy(y) = EyΨy(y) 

(
−ℏ2

2m
)

∂2

∂z2
Ψz(z) = EzΨz(z) 

Each of these are simply freewave Schrodinger equations. We know from the last chapter that 

the solutions are: Ψx(x) = e±i∙k𝑥∙x, etc., which means that the full solution is:  

Ψ(x, y, z) = e±i∙k𝑥∙x ∙ e±i∙k𝑦∙y ∙ e±i∙k𝑧∙z 

It is interesting to note that three separate momentum components now add to the total like a 

vector: k2 = kx
2 + kz

2 + kz
2. This is especially apparent if you use the wavefunction to calculate 

the total energy:  

𝐸 =
ℏ2

2m
(kx

2 + kz
2 + kz

2) =
ℏ2k2

2m
 



311 

 

If for some reason the individual wavevectors were not of equal magnitude, then it would have to 

be true that the total energy wasn’t divided equally between the three dimensions: 𝐸𝑥 ≠ 𝐸𝑦 ≠ 𝐸𝑧. 

This is a very unlikely scenario, but if it was true you would be aware of it due to the fact that 

you must have some basic understanding of the system under study. Or, if you are solving a 

problem this information would be given to you as an initial condition of the system.  

14.1.2. The Particle in a 3D Box and Degeneracy. The quantum particle in a box can be 

extended to multiple dimensions as visually represented in Figure 14.1. From the last chapter, 

this problem was defined by a potential that is 0 inside the box and infinite outside. Boundary 

conditions allow us to define the wavefunctions: Ψ = sin (
nπ

L
x) with the quantum number 

n=1,2,3… that characterize the number of nodes and the energy. Extending this to multiple 

dimensions is straightforward. Given the previous discussion the total wavefunction is just the 

multiple of individual particle in a box functions for x, y and z: 

Ψ2D(x, y, z) = N2D ∙ sin(kxx) ∙ sin(kyy)       Ψ3D(x, y, z) = N3D ∙ sin(kxx) ∙ sin(kyy) ∙ sin(kzz) 

where the normalization constants are N2D =
2

√LxLy
, N3D =

2√2

√LxLyLz
, and  kx =

nxπ

Lx
, ky =

nyπ

Ly
, and 

kz =
nzπ

Lz
. We will limit further discussion to the 3D case from here on. Inserting the 

wavefunction back into the particle in a box Hamiltonian reveals the energy to be: 

E =
ℏ2

2m
(kx

2 + ky
2 + kz

2) =
ℏ2π2

2m
(
nx

2

Lx
2

+
ny

2

Ly
2

+
nz

2

Lz
2
) 
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which can be simplified to E =
ℏ2π2

2mL2 (nx
2 + ny

2 + nz
2) if all the box lengths are the same. As in the 

one-dimensional particle in a box problem, the quantum numbers are limited to whole numbers: 

nx,y,z = 1,2,3… due to the need to satisfy boundary conditions imposed by infinite potential 

energies past the barriers. Various wavefunctions are depicted in Figure 14.2, where we have 

made the simplification that L = Lx = Ly = Lz. It can be seen that there is only one 

wavefunction that gives the lowest energy ground state for which nx,y,z = 1. However, there are 

three potential 1st and 2nd excited states; since for example: 

E =
ℏ2π2

2m ∙ L2
{(nx = 2)2 + 12 + 12} =

ℏ2π2

2m ∙ L2 {12 + (ny = 2)
2
+ 12} =

ℏ2π2

2m ∙ L2
{12 + 12 + (nz = 2)2} 

 This is referred to as a degeneracy, multiple distinct states that all have the same energy. One 

way to recognize degeneracy is if you can rotate the wavefunctions such that they all look the 

same.  

 There isn’t much more to say about these simple multidimensional systems. For example, 

one can generate interesting problems by mixing and matching potential surfaces in different 

dimensions- a freewave surface in x and a parabolic (spring) potential in y. However, the 

solutions are rather trivial, as the total wavefunction in this example is just the freewave in x 

times the harmonic oscillator function in y. Such problems are left for your effort at the end of 

the chapter, and as such we move on to discuss a quantum particle rotating.  
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14.2. Rotational Quantum Mechanics: Introduction. In chemistry, we are deeply 

concerned about electrons and how they can bunch up (bond), or not (antibond), between atomic 

nuclei; this is how molecules form. Unfortunately, atoms are round and their electrons may orbit 

the nucleus like the Moon rotates about the Earth. This means that electrons have angular 

momentum and rotational kinetic energy. We must use quantum mechanics to understand how 

rotation works for light particles such as electrons. Rotational quantum mechanics also applies to 

rotational spectroscopy of molecules, which is in the microwave region of the electromagnetic 

spectrum.  

The most important thing about rotational energy is to determine the rotational kinetic 

energy operator. You may be thinking, “how is rotational kinetic energy different than 

translational kinetic energy?” This indeed sounds like a very difficult question; fortunately, the 

answer is that it isn’t different. Meaning, the kinetic energy Hamiltonian we discussed above: 

−ℏ2

2∙mass
(

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2), hasn’t changed at all! However, there is one slight problem- Cartesian 

coordinates are not very useful for round objects like atoms. Rather, we want to use either 

cylindrical or spherical coordinates. Thus, changing the kinetic energy operator from Cartesian 

(x, y, z) into cylindrical (r, ϕ, z) or spherical (r, ϕ, θ) coordinates is our first objective. 

14.2.1 Cylindrical Coordinate Transformation. If you don’t recall how cylindrical and 

spherical coordinates work see the Example box on the next page. Once you are comfortable 

with these trigonometric equations, we can start on transforming the coordinate system by 

describing an object rotating exclusively in the x-y plane using cylindrical variables. This means 

that x, y → r, ϕ, while z remains z. Our first model is for a quantum mechanical particle that 

rotates in a flat x-y plane with a fixed radius; this is referred to as a 2D rigid rotor. Since the 

object does not move in the z direction we can leave the z coordinate out of the kinetic energy 

operator as so: 

Ĥ2D =
−ℏ2

2 ∙ mass
(

∂2

∂x2
+

∂2

∂y2
) 

This simplifies our transformation problem. The first step is to use the product rule to relate x →

r as follows:  

∂

∂x
=

∂r

∂x

∂

∂r
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However, since x is a function of both r and ϕ we must include the ϕ dependency as well: 

∂

∂x
=

∂r

∂x

∂

∂r
+

∂ϕ

∂x

∂

∂ϕ
 

Cylindrical and Spherical Coordinates 

 

Figure 14.3. Visualization of the polar (θ) and azimuthal (ϕ) angles.   

The transformation of Cartesian to cylindrical or spherical coordinates is a dreadful task of recalling high 

school trigonometry. Rather than reviewing how sine and cosine work and defining the “hypotenuse” 

(which is, in fact, a large semi-aquatic mammal native to sub-Saharan Africa), instead we simply list the  

relevant identities without derivations below. Concerning cylindrical coordinates:  

r = √x2 + y2,ϕ = atan (
y

x
) , z = z 

where ϕ is the azimuthal angle. Likewise:  

x = r ∙ cos(ϕ), y = r ∙ sin(ϕ), z = z 

Spherical coordinates introduce the θ (polar) angle as follows:  

r = √x2 + y2 + z2,ϕ = atan (
y

x
) ,θ = acos(

z

√x2 + y2 + z2
) = acos (

z

r
) 

Likewise:  

x = r ∙ sin(θ)cos(ϕ), y = r ∙ sin(θ)sin(ϕ), z = r ∙ cos(θ) 
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Consequently, the transformation requires us to evaluate 
∂r

∂x
 and 

∂ϕ

∂x
. Based on the relationships on 

the previous page, we see that r = √x2 + y2 and thus:  

∂r

∂x
=

∂(x2 + y2)
1
2

∂x
=

1

2
(x2 + y2)−

1
2 ∙

∂x2

∂x
=

1

2

2x

(x2 + y2)
1
2

=
x

(x2 + y2)
1
2

 

Recall that we are not here to represent anything with x and y, rather r and ϕ. Thus, we must 

recognize that 
1

(x2+y2)
1
2

=
1

r
 and x = r ∙ cos(ϕ). Putting this altogether we see:  

∂r

∂x
=

x

(x2 + y2)
1
2

=
1

r
r ∙ cos(ϕ) = cos(ϕ) 

Likewise, we evaluate 
∂ϕ

∂x
 as:  

∂ϕ

∂x
=

∂atan (y x⁄ )

∂x
= −

sin(ϕ)

r
 

Tying this all together reveals: 

∂

∂x
= cos(ϕ)

∂

∂r
−

sin(ϕ)

r

∂

∂ϕ
 

A similar derivation for the y-coordinate reveals: 

∂

∂y
= sin(ϕ)

∂

∂r
+

cos(ϕ)

r

∂

∂ϕ
 

The way to transform the kinetic energy operator is to evaluate 
∂2

∂x2 and 
∂2

∂y2 using the 

relationships above. The algebra involved isn’t difficult but there are a very large number of 

steps; regardless, the end result is: 

Ĥ =
−ℏ2

2 ∙ mass
∙ (

∂2

∂x2
+

∂2

∂y2
) →

−ℏ2

2 ∙ mass ∙ r2
∙

∂2

∂ϕ2
 

14.2.2 2D rigid rotor. For this model problem, called the 2D rigid rotor, we assume that a 

light particle circulates on a flat potential in the x and y plane with a fixed z coordinate. The 

radius of the motion is fixed, so the particle travels around and around a completely flat track. 

We will begin by making an analogy to the particle in a box problem, which will allow us to 

introduce concepts important to rotation and to calculate the energy. To this end we create a 

visual representation of what the wavefunctions should look like by drawing the particle in a box 
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states on a piece of paper as shown in Figure 14.4 A. There is one additional n = 0 state that has 

no kinetic energy; please note that the particle in a box doesn’t have a n  =0 state due to its zero-

point energy. Next, we fold the paper over to see how each wavefunction bites its own tail as 

seen in Figure 14.4 B. Doing so allows us to see whether the wavefunction is smooth and 

continuous at the seam, for which we can that is the case for the n = 0 and n = 2 states. As a 

result, these are valid 2D rigid rotor wavefunctions. In contrast, the n = 1 and n = 3 are 

continuous but they are not smooth, and as such they are not valid 2D rigid rotor wavefunctions. 

If we analyze the other states we find that odd symmetry ones are ok, while the symmetric ones 

are not.  

We can now calculate the de Broglie wavelength for the allowed states, which provides the 

momentum and thus the k vectors for the wavefunctions and allows us to calculate the energy. 

We can see from the figure that the allowed n=0 state has an infinite wavelength and that the n = 

2 has a wavelength λ = C. We can assume that the other allowed states are n = 4 which has λ =
C

2
 

and n = 6 for which λ =
C

4
. From here we can generate an empirical relationship: λ =

L

m
, where m 
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= 0, 1, 2, … and appears to act like a quantum number. As it is not proper to express this 

wavelength as a function of the circumference of the track (C, same as the length of the particle 

in a box), rather its radius, for which we substitute 2πr = C. We see that the wavelengths for 

allowed 2D rigid rotor states are: λ =
2πr

m
. The de Broglie momenta are then: 

h

λ
=

hm

2πr
=

ℏm

r
 

and the energy is momentum squared over mass: 

E =
ℏ2m2

2 ∙ mass ∙ r2
 

where ℏ =
h

2π
. Despite the unconventional approach we have taken the equation for energy above 

is correct and reveals the existence of a new quantum number “m” for 2D rotation. To finish out 

this section we introduce some terminology. We are describing is a component of orbital 

rotational angular momentum which is typically given the symbol “𝑙𝑧”. It is important to note 

this here because later we will see that there is another quantity called the spin angular 

momentum that has to be added to calculate the total. Discussion on these topics are 

forthcoming; as it applies to the 2D rigid rotor and the energy of rotational motion is:  

E =
𝑙𝑧
2

2I
 

where I = mass ∙ r2 and is called the moment of inertia. From the analogy to the equation for 

energy above we can see that 𝑙𝑧 = ℏm, and thus rotational momenta are quantized due to the 

need for the wavefunction to “bite its tail”, i.e. be smooth and continuous. 

14.2.2.1 2D Rigid Rotor Wavefunctions. The above is a fine start to demonstrate the 

principles of rotational quantum mechanics; however here we will employ more rigorous 

mathematics. We first find the wavefunctions which can be used to calculate the energies and 

evaluate other properties. This is accomplished by defining the angular momentum operator:  

�̂�𝑧 =
ℏ

𝑖

𝜕

𝜕𝜙
 

which makes potential-free Hamiltonian:Ĥ =
�̂�𝑧
2

2I
=

−ℏ2

2I

∂2

∂ϕ2. Now the eigenvalue (Schrodinger) 

equation can be defined as:  

−ℏ2

2I

∂2

∂ϕ2
Ψ(ϕ) = E ∙ Ψ(ϕ) 



318 

 

where, as before, I is the moment of inertia. The wavefunction solution to the above is:  

Ψ(ϕ) = ei∙m∙ϕ 

where “m” is a constant that must be determined using boundary conditions. As you recall the 

same approach allowed us to determine all the details of the particle in a box. Concerning 

boundary conditions, we can see from Figure 14.4 B that the wavefunctions must be continuous 

at the “seam”, which is defined where ϕ = 0 meets ϕ = 2π . Thus, Ψ(ϕ) = Ψ(ϕ + 2π), which 

when applied to the wavefunction: 

ei∙m∙(ϕ+0) = ei∙m∙(ϕ+2π) = ei∙m∙ϕei∙m∙2π 

This only works if ei∙m∙2π = 1, which means that m = … ,−2, −1, 0, 1, 2, … using identities for 

complex exponentials. As before, we have a new integer quantum number defined in exactly the 

same way as was found using our earlier approach to explore the 2D rigid rotor. One difference 

between the m quantum number and earlier examples is that it can be negative. This actually has 

a simple meaning; a positive m is for a quantum particle rotating clockwise while a negative 

value is for a particle rotating counterclockwise. If the 2D rigid rotor decides not to rotate at all, 

then m=0.  

The rotational energy is: 

�̂�𝑧
2

2I
Ψ(ϕ) =

−ℏ2

2I

∂2

∂ϕ2
Ψ(ϕ) =

ℏ2m2

2I
∙ Ψ(ϕ) 

and is exactly the same result derived previously. As usual we should normalize the state(s) via: 

∫ N2 ∙ e−i∙m∙ϕ ∙ ei∙m∙ϕ ∂ϕ

2π

0

= N2 ∙ ϕ]0
2π = N22π = 1 

which reveals that the proper normalized wavefunction is:  

ψ(ϕ) =
1

√2𝜋
ei∙m∙ϕ 

 There isn’t much more to say about this rather simple introduction to rotation, and as 

such we now move onto a particle that isn’t trapped in the x-y plane as discussed below. Before 

we do so, you should know that you will see the 2D rigid rotor once more when the 

wavefunctions for the hydrogen atom are calculated. In fact, this is where we get our notion for 

px, py and pz orbitals; these are revealed in Ch. 15. 

14.2.3 The 3D rigid rotor. For exploring rotational motion in three dimensions we will 

create the most simple model possible by stating that a quantum particle rotates with a fixed 
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radius on a 3D track that has no potential energy. As with the 2D case we first develop the 

kinetic energy operator. To this end we convert coordinates x, y, z → r, ϕ, θ step by step 

beginning with:  

∂

∂x
=

∂r

∂x

∂

∂r
+

∂ϕ

∂x

∂

∂ϕ
+

∂θ

∂x

∂

∂θ
 

and then the same for 
∂

∂y
 and 

∂

∂z
. With these worked out we can then convert the kinetic energy 

operator into the same using spherical coordinates. Unfortunately, the algebra to do so is 

extraordinarily tedious and as a result we will simply provide the end result here: 

Ĥ =
−ℏ2

2 ∙ mass
∙ (

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
) →

−ℏ2

2I
∙ (

1

sin2(θ)

∂2

∂ϕ2
+

1

sin (θ)

∂

∂θ
sin (θ)

∂

∂θ
) 

where the moment of inertial is defined as before: I = mass ∙ r2. The above Hamiltonian is 

usually simplified as: Ĥ =
L̂2

2I
, where L̂ is the total (3D) orbital angular momentum operator. 

Regardless of the notation, the Hamiltonian in spherical coordinates appears pretty fearsome and 

there isn’t much we can do about that other than to begin to solve it using the method of 

separability. First, we assume that the solution has the form:  

ψ(ϕ, θ) = ψ(ϕ)ψ(θ) 

This separated wavefunction is applied to the Hamiltonian: Ĥ ψ(ϕ)ψ(θ): 

−ℏ2

2I
∙ (

1

sin2(θ)

∂2

∂ϕ2
+

1

sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
)ψ(ϕ)ψ(θ) = E ∙ ψ(ϕ)ψ(θ) 

Moving the constants to right side makes this look a little easier: 

(
1

sin2(θ)

∂2

∂ϕ2
+

1

sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
)ψ(ϕ)ψ(θ) =

−2I ∙ E

ℏ2
∙ ψ(ϕ)ψ(θ) 

And now we divide out the wavefunction on the left side: 

1

ψ(ϕ)ψ(θ)
(

1

sin2(θ)

∂2

∂ϕ2
+

1

sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
)ψ(ϕ)ψ(θ) =

1

ψ(ϕ)ψ(θ)

−2I ∙ E

ℏ2
∙ ψ(ϕ)ψ(θ) 

If you are slow and methodical you find that the process of solving the above is fairly 

straightforward. For example, the 
∂

∂θ
 derivative captures ψ(θ) yet allows ψ(ϕ) to pass through 

(and vice versa); after some algebra we see that:  
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1

ψ(ϕ) ∙ sin2(θ)

∂2

∂ϕ2
ψ(ϕ) +

1

ψ(θ) ∙ sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
ψ(θ) =

−2I ∙ E

ℏ2
 

At this point there is a problem with separation because the first part:  

1

ψ(ϕ) ∙ sin2(θ)

∂2

∂ϕ2
ψ(ϕ) 

containing mostly ϕ terms but also has a pesky 
1

sin2(θ)
 term. To remove the problem we multiply 

everything by sin2(θ): 

1

ψ(ϕ)

∂2

∂ϕ2
ψ(ϕ) +

sin(θ)

ψ(θ)

∂

∂θ
sin(θ)

∂

∂θ
ψ(θ) =

−2I ∙ E

ℏ2
sin2(θ) 

Now we have a clean separation of ϕ and θ terms into mini-Schrodinger equations, although it is 

interesting to note that the energy is on the θ side: 

(
1

ψ(ϕ)

∂2

∂ϕ2
ψ(ϕ)) + (

sin(θ)

ψ(θ)

∂

∂θ
sin(θ)

∂

∂θ
ψ(θ) +

2I ∙ E

ℏ2
sin2(θ)) = 0 

To solve this, we assume that the solution to the ϕ mini-Schrodinger equation (left side) is the 

same as the 2D rigid rotor that we worked on previously: ψ(ϕ) =
1

√2π
ei∙m∙ϕ. As a result:  

Spherical Harmonics 

𝑙, m Y𝑙,m𝑙
= ψ(ϕ)ψ(θ) 𝑙, m ψ(ϕ)ψ(θ) 

𝑙 = 0 𝑙 = 2 

m = 0 1

√4π
 

m = -2 

√
15

32π
sin2(θ)e−2ϕ 

𝑙 = 1 m = -1 

√
15

8π
sin(θ)cos(θ)e−ϕ 

 = -1 

√
3

8π
sin(θ)e−ϕ 

m = 0 

√
5

16π
(3cos2(θ) − 1) 

m = 0 

√
3

4π
cos(θ) 

m = 1 

−√
15

8π
sin(θ)cos(θ)eϕ 

m = 1 

−√
3

8π
sin(θ)eϕ 

m = 2 

−√
15

32π
sin2(θ)e2ϕ 

Table 14.1. The spherical harmonics, the solutions to the 3D rigid rotor Hamiltonian. 
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1

ψ(ϕ)

∂2

∂ϕ2
ψ(ϕ) = √2π ∙ e−i∙m∙ϕ

∂2

∂ϕ2

1

√2π
ei∙m∙ϕ = −m2 

which when inserted into the full equation above we find that: 

sin(θ)

ψ(θ)

∂

∂θ
sin(θ)

∂

∂θ
ψ(θ) +

2I ∙ E

ℏ2
sin2(θ) = m2 

One of the most interesting aspects of quantum mechanics is that this differential equation was 

solved in 1782 by Pierre Simon de Laplace, who was called the “Newton of France” and was one 

of Napoleon Bonaparte’s teachers. The solutions are called the spherical harmonics and are listed 

in Table 14.1. The wavefunctions are classified by a new quantum number 𝑙, which as usual can 

only have integer values: 𝑙 = 0, 1, 2, 3…. There are 2𝑙 + 1 wavefunctions associated with each 𝑙 

quantum number, which are due to the 2D rigid rotor m quantum number that will now be 

Example Problem 14.1 

Let’s verify that Y𝑙=1,m𝑙=0 = ψ(θ) = √
3

4π
cos(θ) ∙ ei∙0∙ϕ = √

3

4π
cos(θ) is an eigenfunction of the 

3D rigid rotor Schrodinger equation:  

sin(θ)
∂

∂θ
sin(θ)

∂

∂θ
ψ(θ) +

2I ∙ E

ℏ2
sin2(θ)ψ(θ) = m2ψ(θ) 

Since m=0 the above simplifies to: 

sin(θ)
∂

∂θ
sin(θ)

∂

∂θ
ψ(θ) +

2I ∙ E

ℏ2
sin2(θ) ∙ ψ(θ) = 0 

To solve the problem on the left we apply the derivative: 
∂

∂θ
cos(θ) = −sin(θ) and insert the 

expression for energy E= 𝑙(𝑙 + 1)
ℏ2

2I
=

ℏ2

I
 because 𝑙 = 1: 

−sin(θ)
∂

∂θ
√

3

4π
sin2(θ) + 2sin2(θ) ∙ ψ(θ) 

Since we know that 
∂

∂θ
sin2(θ) = 2 sin(θ)cos(θ) we find that the left term is:  

−sin(θ)
∂

∂θ
√

3

4π
sin2(θ) = −2sin2(θ) {√

3

4π
cos(θ)} = −2sin2(θ) ∙ ψ(θ) 

Putting this altogether: 

−2sin2(θ) ∙ ψ(θ) + 2sin2(θ) ∙ ψ(θ) = 0 

which is proof that the Y1,0 is a valid solution for the 3D Rigid Rotor Hamiltonian.  
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abbreviated as m𝑙. They can take on integer values m𝑙 = 𝑙, ( 𝑙 − 1), … 0…− 𝑙, and it is important 

to note that there are 2𝑙 + 1 possibilities. The wavefunctions are thus abbreviated as Y𝑙,m𝑙
 to 

designate the 𝑙 and sub-m𝑙 quantum states. Now that we know the wavefunctions we can use the 

to calculate the total orbital angular momentum using the L̂2 operator, which returns a function 

based on the 𝑙 quantum number: 

L̂2Y𝑙,m𝑙
= 𝑙(𝑙 + 1)ℏ2 ∙ Y𝑙,m𝑙

 

This allows to calculate the energy of the 3D rigid rotor: 

E = 𝑙(𝑙 + 1)
ℏ2

2mr2
= 𝑙(𝑙 + 1)

ℏ2

2I
 

which are 2𝑙 + 1 degenerate as discussed above. 

The spherical harmonics are important to a very large number of scientific fields and are 

often abbreviated as Y𝑙,m𝑙
(ϕ, θ). We will now examine them as a function of the 𝑙 quantum 

number, which may look surprisingly similar to the wavefunctions you learned about for the 

hydrogen atom in Freshman chemistry.  

14.4 Wavefunctions, the s-state. 

Laplace’s wavefunctions are probably 

familiar to most physical chemistry students 

already. For example, the lowest energy 

solution 𝑙 = 0, m𝑙 = 0 has the solution: 

Y𝑙=0, m𝑙=0(ϕ, θ) =
1

√4π
 

This lowest energy state is referred to as the 

s-state and it has no dependence on angle. To 

plot this wavefunction we will use what is called a “probability isosurface”, which is a picture of 

where all the probabilities |Y𝑙,m𝑙
(ϕ, θ)|

2
 have a specific value, such as  |Y𝑙,m𝑙

(ϕ, θ)|
2
= 0.95. 

When applied to Y0,0 we see a sphere as shown in Figure 14.5. What is interesting to note is that, 

while it is intuitive to describe a particle with a wavefunction as clearly circulating the origin this 

is in fact not the case as the rotational energy is:  

𝐸 = 𝑙(𝑙 + 1)
ℏ2

2I
= 0 J 
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The proper way to see this fact is that the wavefunction has no nodes, which is how quantum 

mechanics always imparts kinetic energy including rotational.  

 14.4.1. P- and d-states. Now let’s climb the rotational kinetic energy ladder and examine 

the p-states. There must be three 𝑙 = 1 wavefunctions given the m𝑙 level degeneracy (m𝑙 =

−1,0,1), and they are plotted in Figure 14.6.  We expect that we may see hydrogen-like pz, px 

and py states, and in fact the m𝑙 = 0 sure looks like pz! However, the two m𝑙 = ±1 

wavefunctions do not look anything like px or py!  

  The reason why you aren’t seeing the expected px and py “dumbbells” is that the spherical 

harmonics with finite values of the m quantum number have 𝑒±𝑖∙𝑚∙𝜙 terms, which are complex 

(i.e. it contains real and imaginary numbers). Such functions are travelling waves; however, we 

would prefer stationary waves if possible. It turns out that we can remove the travelling wave 

components simply by making linear combinations of the spherical harmonics, which is valid 

because the sum of two Hamiltonian wavefunctions is still a valid wavefunction.  
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In this endeavor, let’s see what happens if we do this: Y1,1 + Y1,−1, which is an attempt to 

remove the m𝑙 dependence. Looking up the functions from the table yields: 

Y1,1 + Y1,−1 = √
3

8π
sin(θ)ei∙ϕ + √

3

8π
sin(θ)e−i∙ϕ 

Next, collecting terms and using the identity e−i∙ϕ + ei∙ϕ ~ cos(ϕ) yields: 

Y1,−1 + Y1,1 ~ sin(θ)cos(ϕ) 

If we recall that, for spherical coordinates: x = sin(θ)cos(ϕ), which makes Y1,1 + Y1,−1 equal to 

the px orbital. Following the same idea we find that the difference of the two spherical harmonics 

Y1,1 − Y1,−1can be simplified using ei∙ϕ − e−i∙ϕ ~ sin(ϕ)  to:  

Y1,1 − Y1,−1~sin(θ)sin(ϕ) 

and since y = sin(θ)sin(ϕ) then Y1,1 + Y1,−1 is the py orbital. In fact, when we plot the 

isosurfaces of these functions in Figure 14.7 we see that is indeed the case.  

 Running through the same arguments for the five 𝑙 = 2 d-states yields familiar hydrogen-

like results as shown in Figure 14.8, and similarly for the seven f states. We will see these 

functions again when studying the hydrogen atom in the next chapter. Furthermore, the periodic 

table is arranged based on the 𝑙 quantum number. Hopefully you learned in Freshman chemistry 

that 𝑙 = 1 is the main block, 𝑙 = 2 are for the transition metals and 𝑙 = 3 are the trans-uranium 

elements.  

14.5. Spin Angular Momentum. You should recall from your many other classes that 

electrons are “spin one-half” and can either be spin up or spin down. You applied these facts 

when creating the electron configuration of transition metals in your inorganic chemistry class; 

an example for the 16-electron tetrahedral compound nickel carbonyl is shown in Figure 14.9. 
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Why only spin up or down? Because, if the angular 

momentum of an electron is 𝑙 =
1

2
, then the allowed m𝑙 

values are +
1

2
 and −

1

2
. More important is to understand 

what spin angular momentum is. While it is tempting to 

state that the electron is spinning on its axis like the earth, 

akin to the type of angular motion that was discussed in 

the previous sections, unfortunately this is not the case. 

The reason is that there are many other subatomic 

particles that have the same half spin momentum, including the proton, neutron, and quarks. 

Given that “normal” angular momentum is proportional to mass, and a proton is ~2000× heavier 

than an electron, how could they possibly have the exact same spin from classical rotational 

motion? The conclusion is that spin is a type of angular momemtnum, but it doesn’t originate 

from the type of rotational motion that we are accumtomed to.  

 Unfortunately no one really knows what spin angular momentum is other than its 

existence can be demonstrated by integrating Einstein’s theory of relativity with quantum 

mechanics. As a result, it is considered important to distinguish spin angular momentum from 

“normal” orbital angular momentum discussed here. To do so, spin angular momentum is 

designated with “s” as the quantum number (similar to 𝑙 for orbital angular momentum). There is 

a spin angular momentum operator Ŝ that, when applied to the spin wavefunction ψ = α or ψ =

β yields: 

Ŝ2α = s(s + 1)ℏ2 ∙ α 

likewise Ŝ2β = s(s + 1)ℏ2 ∙ β. Thus, the total angular momentum is ℏ√s(s + 1) = √
3

4
ℏ for 

either the α or β state. There are sub-mS states designated with the sz quantum number, which is 

known as the “magnetic spin”. This name comes about because the magnetic properties of 

electrons are due to spin, which is the source of the magnetism used in power plant turbine 

electrical generators. The magnetic spin operator Ŝz has the following properties when applied to 

the spin α and β wavefunctions: 

Ŝzα =
1

2
ℏα     and     Ŝzβ = −

1

2
ℏβ 



326 

 

which allows us to distinguish them. The names “up” for α and “down” for β came about 

because, if you accelerate an electron in a magnetic field, you will see the electrons either deflect 

upwards or downwards depending on the magnetic spin quantum number. Spin is also the source 

of magnetism of protons and neutrons that makes certain elements and isotopes NMR active. 

This type of nuclear magnetism is however much weaker than the fields created by electrons. 

The wavefunctions are orthonormal: ∫α∗α = ∫β∗β = 1 while ∫αβ = 0, which is 

important when we discuss the hydrogen atom next chapter. At this point you are probably 

expecting to see some kind of function for the α and β states, maybe a complex exponential or a 

sine or cosine; however, we don’t really know what spin is so there is no mathematical definition 

for it as a result. What the spin wavefunctions allow us to do is to satisfy the Pauli principle, 

which you may recall is why you 

fill atomic orbitals with spin up 

electrons first and then spin down. 

The Pauli principle states that no 

two electrons can be in the same 

state at the same time, and the fact 

that electrons have spin is why you 

can have two occupy the same 

atomic orbital but not violate that 

rule at the same time.  

14.6. Angular Momentum Operators. Angular momentum is defined as: 

L⃑ = r × p⃑  

where r  is the position of the particle, p⃑  is momentum and reveals the direction of motion, and L⃑  

is the angular momentum vector. As everything is a vector the angular momentum can be 

decomposed into x, y and z components, i.e. L⃑ = L̂x + L̂y + L̂z (this will be important later). While 

understanding angular momentum can be intimidating, if you look at Figure 14.10 you see that it 

is basically the axel of a wheel as defined by the rotation of a particle. As shown in the figure the 

only nuance is that the right-hand rule dictates whether the vector is up or down depending on the 

direction that the particle is rotating. The relationship L⃑ = r × p⃑  was part of your learning of 

classical mechanics; likely you learned about it Physics I or even in high school. To create a 
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quantum mechanical operator for angular momentum, we simply insert r̂ as the position operator 

and p̂ =
ℏ

𝑖
{

𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
+

𝜕

𝜕𝑧
} as the momentum operator into r × p. The cross product simplifies into 

relationships for angular momentum as projected into x, y and z as: 

L̂x =
ℏ

i
{y ∙

∂

∂z
− z ∙

∂

∂y
},  L̂y =

ℏ

i
{z ∙

∂

∂x
− x ∙

∂

∂z
}, and  L̂z =

ℏ

i
{x ∙

∂

∂y
− y ∙

∂

∂x
} 

Next, we insert x, y, and z in spherical coordinates. You may recall we already showed how to 

covert 
𝜕

𝜕𝑥
 etc.: 

∂

∂x
=

∂r

∂x

∂

∂r
+

∂ϕ

∂x

∂

∂ϕ
+

∂θ

∂x

∂

∂θ
 and likewise: 

∂

∂y
=

∂r

∂y

∂

∂r
+

∂ϕ

∂y

∂

∂ϕ
+

∂θ

∂y

∂

∂θ
. These simplify 

to: 

∂

∂x
= sin(θ) cos(ϕ)

∂

∂r
+

cos(θ)cos (ϕ)

r

∂

∂θ
−

sin(ϕ)

r ∙ sin(θ)

∂

∂ϕ
 

and: 

∂

∂y
= sin(θ) sin(ϕ)

∂

∂r
+

cos(θ)sin(ϕ)

r

∂

∂θ
+

cos(ϕ)

r ∙ sin(θ)

∂

∂ϕ
 

 Hence the angular momentum in the z direction is: L̂z =
ℏ

i
{x ∙

∂

∂y
− y ∙

∂

∂x
} =

ℏ

i
∙ 

{r ∙ sin(θ)cos(ϕ) ∙ sin(θ) sin(ϕ)
∂

∂r
+ r ∙ sin(θ)cos(ϕ) ∙

cos(θ)sin(ϕ)

r

∂

∂θ
+ r ∙ sin(θ)cos(ϕ) ∙

cos(ϕ)

r ∙ sin(θ)

∂

∂ϕ

−r ∙ sin(θ)sin(ϕ) ∙ sin(θ) cos(ϕ)
∂

∂r
− r ∙ sin(θ)sin(ϕ) ∙

cos(θ) cos(ϕ)

r

∂

∂θ
+ r ∙ sin(θ)sin(ϕ) ∙

sin(ϕ)

r ∙ sin(θ)

∂

∂ϕ
}

 

While this looks overwhelming, note how the first two terms on each line cancel, leaving: 

L̂z =
ℏ

i
∙ {r ∙ sin(θ)cos(ϕ) ∙

cos(ϕ)

r ∙ sin(θ)
+ r ∙ sin(θ)sin(ϕ) ∙

sin(ϕ)

r ∙ sin(θ)
}

∂

∂ϕ
= 

ℏ

i
∙ {cos2(ϕ) + sin2(ϕ)}

∂

∂ϕ
=

ℏ

i

∂

∂ϕ
 

Very simple! Along the same lines you find that:  

L̂x =
ℏ

i
(− cot(θ) cos(ϕ)

∂

∂ϕ
− sin(ϕ)

∂

∂θ
) 

and:  

L̂y =
ℏ

i
(− cot(θ) sin(ϕ)

∂

∂ϕ
+ cos(ϕ)

∂

∂θ
) 

The angular kinetic energy can be derived from: 

L̂2

2I
=

(L̂x + L̂y + L̂z)
2

2I
=

−ℏ2

2I
(

1

sin2(θ)

∂2

∂ϕ2
+

1

sin (θ)

∂

∂θ
sin (θ)

∂

∂θ
) 
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which is exactly the same as shown before. 

Overall is it unfortunate that all these operators are a bit complicated, but they are 

important because they reveal the existence of another uncertainty principle. You may recall 

from Ch. 13 section that, for two operators Â and B̂ if the following is true: 

[Â, B̂] = Â ∙ B̂ − B̂ ∙ Â ≠ 0 

(the operators don’t commute), then the two operators don’t share the same eigenvectors. In 

other words, if Φ is an eigenvector of Â, then ÂΦ = ωΦ where ω is just a constant such as ℏ or 

0. However, the eigenvalue equation for won’t work for the other operator: B̂Φ ≠ ωΦ. Hence, 

whatever observable that B̂ describes, you can’t know what that is for the state described by Φ. 

For example, in the previous chapter it was shown that [x̂, p̂] = −iℏ for operators x̂ and p̂, so you 

can’t know where something is and where it is going fully at the same time.   

Returning to our rotational wavefunctions (the spherical harmonics), these have to be 

eigenfunctions of the L̂2 operator because they were solved to be the wavefunctions of rotational 

kinetic energy which is just L̂2 times a constant. Since it is always true that an operator 

commutes with its square, i.e. [L̂2, L̂] = L̂2L̂ − L̂L̂2 = L̂3 − L̂3 = 0, then the spherical harmonics 

are all eigenfunctions of L̂. If you apply L̂z, you see that all of the spherical harmonics are 
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eigenfunctions of L̂z too. Since L̂ 

and L̂z share a common set of 

eigenfunctions, then it must be 

true that [L̂, L̂z] = 0. However, 

using the operators above you 

can show that: [L̂, L̂x] ≠ 0, 

[L̂, L̂y] ≠ 0,   [L̂z, L̂x] ≠ 0, and 

finally [L̂z, L̂y] ≠ 0. Hence, 

when describing rotation we can 

know the total angular 

momentum 〈L̂〉 (the length of the “axel” in Figure 14.9) and the projection onto the z-axis 〈L̂z〉 

(the tilt of the angular momentum vector), but we don’t know the projection of angular 

momentum onto the x or y axes, i.e. 〈L̂x〉 and 〈L̂y〉. This is represented in Figure 14.11, where the 

motion of the quantum particle is displaced from the origin of its angular momentum vector so 

you can more easily see the rotation. What it means for 〈L̂x〉 and 〈L̂y〉 to be unknown is that the ϕ 

angle of the angular momentum vector is not defined. As a result, the angular momentum vector 

〈L̂〉 can point anywhere in the x-y plane when m𝑙 = 0. If m𝑙 = 1, the angular momentum vector 

can be anywhere on the surface of a cone as shown to the right of Figure 14.11. The cone 

representation on the right also includes m𝑙 = −1; examples for 𝑙 =
1

2
 and 𝑙 = 2 are also 

provided in Figure 14.12 where again we emphasize that the L vectors lie on the surface of the 

cones, yet they describe rotation about those vectors like a wheel about its axel.  

14.7. Addition of Angular Momentum and Term Symbols. One of the more 

complicated things about electronic structure is the addition of spin and “normal” orbital angular 

momenta. This is important because the total energy is proportional to the square of the total 

angular momentum. Thus far we have already introduced L̂ and Ŝ operators and their associated 𝑙 

and 𝑠 quantum numbers as defined previously. Now we define the total angular momentum 

operator Ĵ: 

Ĵ = L̂ + Ŝ 
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A pictorial representation is shown in Figure 14.13. The total angular momentum operator 

returns eigenvalues via:  

Ĵψ = ℏ√j(𝑗 + 1) ∙ ψ 

where j is the quantum number for the total angular momentum, and likewise there are sub-total 

angular momentum states determined by the operator Ĵ𝑧 that has eigenvalues j𝑧. Similar to the m𝑙 

quantum numbers, the allowed values for jz are:   

j, j − 1…0…− j 

The wavefunctions of the total angular momentum operators Ĵ and Ĵ𝑧 are sums of the individual 

orbital×spin states.  

An atom with both orbital (𝑙) and spin (s) momentum angular momenta is like a 

gyroscope that has another gyroscope on top of it. While this sounds complicated, to sum the 

momentum one simply uses vector addition. However, there is a problem when it comes to 

quantum angular momenta because the uncertainty principle dictates that the x, y and z 

components of either the orbital 𝑙 or spin s momentum vectors are not fully known. Furthermore, 

we aren’t so concerned with Ĵ, rather Ĵ2 as the square of the momentum gives us the energy. 

Fortunately, the mathematics of connecting the 𝑙 orbital and s spin together to form j have been 

established; however this is best left to graduate-level texts on quantum mechanics. Here we will 

show the end result, which is that the final 

j quantum number results from either 

constructive (addition) or destructive 

(subtraction) of the 𝑙 and s angular 

momenta, which when applied to the 

quantum numbers results in the following 

relationship:  

j = 𝑙 + s, 𝑙 + s − 1… |𝑙 − s| 

Take for example a hydrogen atom in a 

2p1 excited state. Here, we have to add the 

spin angular momentum s =
1

2
 with the 

orbital momentum 𝑙 = 1. As a result, we 

can see that there are two possible j states:  
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j = 𝑙 + s = 1 +
1

2
=

3

2
 and j = 𝑙 − s = 1 −

1

2
=

1

2
. We can express this information in a quantity 

called a term symbol: 2S+1Lj; in this example there are two possible states labeled 2P3 2⁄  and 

2P1 2⁄ . It is important to note that there are six possible states for the 2p1 electron configuration 

because there are two possible spins (up or down) that can go into one of three orbitals (px, py 

and pz); these are depicted in Figure 14.14. As a result, there must also be six j states, and we can 

find them once we consider the sub-total angular momentum states jz.  

For j =
3

2
 there are four sub-states (jz =

3

2
,
1

2
, −

1

2
, −

3

2
), while j =

1

2
 has two sub-states 

(jz =
1

2
, −

1

2
) for a total of six. It is important that we don’t “lose” states when adding them 

together! These states are shown to the right of Figure 14.14, where you can see that the different 

j states are linear combinations of the singularly filled px, py and pz orbitals. Last, we note that 

these states are degenerate, however there is an effect called spin orbit coupling that 

energetically favors the 2P1 2⁄ ; this is explained in the next chapter.   

You might be curious about the 2S+1 part of the term symbol. This is called the 

multiplicity, and to explain it let’s do another example of the addition of angular momentum just 

for spin. We run into such a problem for the excited state of helium with an electron 

configuration of 1s12s1 as shown in Figure 14.15. As there is no 𝑙 angular momentum, we are 

simply adding the two s quantum numbers, s1 and s2 to the total angular momentum that we call 
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stot. Following the addition rules reveals two possibilities, one of which is: stot = s1 + s2 =
1

2
+

1

2
= 1. This configuration must have a total of three sub-stot states which are: 

stot, stot − 1,−stot = 1, 0, −1 

You may have figured out already based on the diagram that these are the triplet states, where ↑↑ 

is for the +1 sub-stot state, ↓↓ is for -1 and ↑↓ +↓↑ is for 0. Likewise there is the singlet state with 

a stot = s1 − s2 = 0, which has the associated spin wavefunction ↑↓ −↓↑. The singlet state 

cannot be degenerate. Consequently, the 2S+1 part of a term symbol is meant to convey the 

degeneracy expected due to spin angular momentum.  
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Problems: Numerical  

 1. a. Shown here are the p-orbitals of 

benzene’s electrons. The occupied 

HOMO looks like a 2D rigid rotor m=1 

wavefunction, whereas the LUMO is 

like m=2. If this transition is responsible 

for the absorption of UV light, what 

wavelength of photon in nanometers will 

the electron absorb? The energy of a 2D 

rigid rotor is 
ℏ2m2

2I
, where I = m𝑒r

2. The 

ring radius r can be approximated by the 

C=C distance in benzene, which is 1.39 Å, and m𝑒  is the mass of an 

electron (9.109 × 10−31 kg).    (7 pts) 

Hint: to do these conversions I usually remember the following 

conversion factors:  

1 J = 6.242 × 1018 eV and the wavelength in nanometers from eV is: 

nm =  
1240

 eV
 (i.e. divide 1240 by the energy in eV to get the the 

absorption in nanometers).  

b. The absorption spectrum of pyrene is as shown here. It 

seems that the absorption is at ~340 nm. Can you calculate 

the radius of pyrene and show that it is greater than benzene 

(obviously)?      (7 pts) 
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Problems: Theoretical or Explain in Words  

1. Did I mention that people who are good at math are really really rich? 

We will practice with differential equations of more than one variable. The purpose of this exercise is to convert the 

eigenvalue equation into a separable form composed of “mini-Schrodinger” differential equations that are solved 

separately. We will also see that the eigenvalue may become a part of only one of these mini-differential equations. 

Let’s say that we must solve the following differential equation called Ĥ: 

Ĥ =
1

x

∂2

∂y2
+

1

x

∂

∂x
 

a. Let’s see if the equation is separable. To do first apply a solution ψ to the right: Ĥψ = Eψ, and then divide by the 

same on the left 
1

ψ
Ĥψ =

1

ψ
Eψ. Since we assume ψ = ψ(x)ψ(y) the result is: 

1

ψ(x)ψ(y)
Ĥψ(x)ψ(y) =

1

ψ(x)ψ(y)
Eψ(x)ψ(y) 

where E is the eigenvalue. Please do so as above and simplify whenever possible. Hint: here is an example of 

simplification: 
1

𝑓(𝑥)𝑓(𝑦)𝑓(𝑧)

𝜕

∂x

𝜕

∂y
𝑓(𝑥)𝑓(𝑦)𝑓(𝑧) =

1

𝑓(𝑥)𝑓(𝑦)

𝜕

∂x
𝑓(𝑥)

𝜕

∂y
𝑓(𝑦)     (5 pts) 

b. Now to demonstrate separability you have to do some algebra on your answer from pt. a to make it look like:  

{𝑡𝑒𝑟𝑚𝑠 𝑤𝑖𝑡ℎ 𝑦} + {𝑡𝑒𝑟𝑚𝑠 𝑤𝑖𝑡ℎ 𝑥} = 0 

The problem with the above is that your answer form pt. a has this term: 
1

ψ(y)

1

x

∂2

∂y2 ψ(y), hence both “x” and “y” are 

in this same expression. This isn’t allowed, please use some very simple algebra to remove “x” from this “y” term and 

tell us the result. Also, the eigenvalue “E” has now become part of one of the terms- which is it (the “x” or “y”)?  

            (2 pts) 

c. Suppose that you somehow know that ψ(y) = eiq∙y, where q is an integer. Please simplify the expression below by 

inserting ψ(y) = eiq∙y:           (3 pts) 

1

ψ(y)

∂2

∂y2
ψ(y) +

1

ψ(x)

∂

∂x
ψ(x) − E ∙ x = 0 

d. Now we often have to solve the mini-Schrodinger “x” equation by inserting values for q. Let’s say that, if q=0 then 

ψ(x) = ex2
. Can you solve the equation from your answer to pt. c for the eigenvalue “E”? Hint: E=2.  (5 pts) 

2. In 2-D, the Hamiltonian of the free wave (no potential energy) is:  

−ℏ2

2m
(

∂2

∂x2
+

∂2

∂y2
) 
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a. Show that writing the total wavefunction as: Ψ(x, y) = Ψ(x) + Ψ(y) is incorrect because it is not an eigenfunction 

of the Hamiltonian, i.e.:  

ĤΨ(x, y) ≠ E ⋅ Ψ(x, y) 

where E = Ex + Ey. You can assume that: 
−ℏ2

2m

∂2

∂x2 Ψ(x) = Ex ∙ Ψ(x) and: 
−ℏ2

2m

∂2

∂y2 Ψ(y) = Ey ∙ Ψ(y)  and Ex ≠ Ey. Of 

course 
−ℏ2

2m

∂2

∂x2 Ψ(y) = 0, etc.         (5 pts) 

b. Now you can show that a proper wavefunction has the form:  

Ψ(x, y) = Ψ(x) ⋅ Ψ(y) 

because then ĤΨ(x, y) = E ⋅ Ψ(x, y) where E = Ex + Ey.      (5 pts) 

 

3. a. Let’s say that we have an atom with bonds in both the x- and y-directions. The 

Hamiltonian is: 

 
−ℏ2

2m
{

∂2

∂x2
+

∂2

∂y2
} +

1

2
kfx

2 +
1

2
kfy

2 

Given that the 1-D normalized ground state wavefunction is:  

Ψ(x) = (
1

𝜋𝛼
)

1
4
e
−x2

2α2  

please use your instincts to write down what you think the 2D wavefunction is. Hint: You don’t have to derive 

anything- you should be able to guess a proper wavefunction with the information provided.   (4 pts) 

b. I have taken a vibrational potential in the 

x-direction and added a y dimension. The y 

potential energy is flat but becomes infinite 

at y=0 and y=L as shown here. What do you 

expect the ground state wavefunction to 

be? Hint: You might have to look up one 

of the normalized wavefunctions we 

studied earlier.            (6 pts) 

4. Here we will demonstrate that a 2D rigid rotor (“electron-on-a-string”) can absorb light.   

a. The 2D rigid rotor wavefunctions are: Ψ =
1

√2π
ei∙mϕ. What is the angular momentum change going from the m=1 

state to the m=2 state if the rigid rotor absorbs light? Hint, the angular momentum operator is jẑ =
ℏ

i

∂

∂ϕ
. (5 pts) 
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b. The angular momentum of light is ℏ, so do you think a 2D rigid rotor can absorb light?   (2 pts) 

Answer: a. First, calculate the angular momentum of each state. For the m=2: 

 
ℏ

i

∂

∂ϕ

1

√2π
ei∙2ϕ =

ℏ

i
2i ∙

1

√2π
ei∙2ϕ = 2ℏ

1

√2π
ei∙2ϕ 

Therefore the angular momentum of the m=2 state is 2ℏ. Likewise the angular momentum of the m=1 state is evaluated 

from: 
ℏ

i

∂

∂ϕ

1

√2π
eiϕ =

ℏ

i
i ∙

1

√2π
eiϕ = ℏ

1

√2π
eiϕ, and is thus ℏ. 

As a result, the gain in angular momentum is 2ℏ − ℏ = ℏ. 

b. The angular momentum of light is conserved by the transition of the rigid rotor so yes the 2D rigid rotor can absorb 

light. 

5. Now that we are working in more than one dimension, you should know that the flux operator is actually: 

1

2mi
(ψ∗∇ψ − ψ∇ψ∗) 

The ∇ (del) operator in cylindrical coordinates is: ∇=
∂

∂r
+

1

r

∂

∂ϕ
+

∂

∂z
. 

a. First simplify the flux operator given that the 2D rigid rotor is not moving in r or z.   (3 pts) 

b. So, what is the flux of the 2D rigid rotor given ψ = eim∙ϕ?              (7 pts) 

6. The fact that the flux isn’t 0 means that the 2D rigid rotor particle with ψ = ei∙ϕ is moving, as in the previous 

problem. However, would the flux be for ψ = ei∙ϕ + e−i∙ϕ? This question is rather difficult, so we will break it down 

into parts.  

a. Please evaluate ψ∗ ∂

∂ϕ
ψ = (e−i∙ϕ + ei∙ϕ)

∂

∂ϕ
(ei∙ϕ + e−i∙ϕ)      (5 pts) 

b. Next evaluate ψ
∂

∂ϕ
ψ∗ = (ei∙ϕ + e−i∙ϕ)

∂

∂ϕ
(e−i∙ϕ + ei∙ϕ)      (5 pts) 

c. Last, evaluate 
1

2mi∙r
(ψ∗ ∂

∂ϕ
ψ − ψ

∂

∂ϕ
ψ∗) =

1

2mi∙r
(pt. a − pt. b)     (2 pts) 

7. To solve the 3-D Hamiltonian you must show that the radial and angular wavefunctions are separable: Ψ(r, θ, ϕ) =

Ψ(r) ∙ Ψ(θ) ∙ Ψ(ϕ) which you do by demonstrating that the differential equation: 
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
(

1

sin2(θ)

∂2

∂ϕ2 +

1

sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
) can be separated into two smaller ones. What does that even mean? We will explain by first 

simplifying the equation above as: 

∂2

∂r2
+

2

r

∂

∂r
+

1

r2
Λ̂ 
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where Λ̂ is an operator that has all the angles (θ, ϕ) in it. Next, we act on the wavefunction on the right and divide it 

out on the left like: 
1

Ψ
∙ Θ̂ ∙ Ψ =

1

Ψ
∙ E ∙ Ψ = E 

1

Ψ(r) ∙ Ψ(θ) ∙ Ψ(ϕ)
(

∂2

∂r2
+

2

r

∂

∂r
+

1

r2
Λ̂) ∙ Ψ(r) ∙ Ψ(θ) ∙ Ψ(ϕ) = E 

a. Use the following notation: 
∂2

∂r2
Ψ(r) = Ψ′′(r) and 

∂

∂r
Ψ(r) = Ψ′(r), show that the above can be simplified into: 

Ψ′′(r)

Ψ(r)
+

2 ∙ Ψ′(r)

r ∙ Ψ(r)
+

1

r2 ∙ Ψ(θ) ∙ Ψ(ϕ)
Λ̂ ∙ Ψ(θ) ∙ Ψ(ϕ) = E 

Hint: This is easier than it looks- just look at the number of points for this question!   (6 pts)  

b. Now the equation above is almost separable, except that the 3rd term: 

 
1

r2 ∙ Ψ(θ) ∙ Ψ(ϕ)
Λ̂ ∙ Ψ(θ) ∙ Ψ(ϕ) 

has both angles (θ, ϕ) and an 
1

r2
 term in it. Can you show that the equation can be separated by multiplying by r2 and 

do some algebra to yield: 

r2
Ψ′′(r)

Ψ(r)
+ 2r

Ψ′(r)

Ψ(r)
+

1

Ψ(θ) ∙ Ψ(ϕ)
Λ̂ ∙ Ψ(θ) ∙ Ψ(ϕ) = E ∙ r2 

Hint: Like pt. a this is easier than it looks.         (4 pts) 

8. Time for some operator practice. Please show that, if you apply a 2p wavefunction: 

ψ = sin(θ) ⋅ eiϕ 

to the 3D rigid rotor Hamiltonian:  

−ℏ2

2I
{

1

sin2(θ)

∂2

∂ϕ2
+

1

sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
}Ψ = E ∙ Ψ 

we should derive:  

ℏ2

2I
𝑙(𝑙 + 1)Ψ =

ℏ2

I
∙ sin(θ) ⋅ eiϕ 

since 𝑙 = 1 for a p state. Hence, the energy of this wavefunction is 
ℏ2

I
.      (10 pts) 

Hint: Let’s just leave the constants out of the derivation first, leaving you to solve: 

1

sin2(θ)

∂2

∂ϕ2
sin(θ) ⋅ eiϕ +

1

sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
sin(θ) ⋅ eiϕ 
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Once you power through this you can multiply the results by 
−ℏ2

2I
. Here is an identity you need: 

(1−cos2(θ))

sin(θ)
= sin(θ).   

9. Time for some operator practice. Please show that, if you apply a 2p wavefunction: 

ψ = sin(θ) ⋅ e−iϕ 

to the 3D rigid rotor Hamiltonian:  

−ℏ2

2I
{

1

sin2(θ)

∂2

∂ϕ2
+

1

sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
}Ψ = E ∙ Ψ 

you should derive an energy of:  

E ∙ Ψ =
ℏ2

2I
𝑙(𝑙 + 1) ∙ Ψ =

ℏ2

I
∙ sin(θ) ⋅ e−iϕ 

since 𝑙 = 1 for a p state. Hence, the energy of this wavefunction is 
ℏ2

I
.              (10 pts) 

Hint: Let’s just leave the constants out of the derivation first, leaving you to solve: 

1

sin2(θ)

∂2

∂ϕ2
sin(θ) ⋅ e−iϕ +

1

sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
sin(θ) ⋅ e−iϕ 

Once you power through this you can multiply the results by 
−ℏ2

2I
. Here is an identity you need: 

(1−cos2(θ))

sin(θ)
= sin(θ).  

10. a. 3D Integrals! The ground state angular wavefunction of the 2pz orbital is:  

ψ2𝑝𝑧
(θ, ϕ) =

√3

2√𝜋
cos(θ) 

Can you integrate it to show that it is normalized: ∫ ∫ |ψ2𝑝𝑧
(θ, ϕ)|

2π

0
∂θ ∂ϕ

2π

0
= 1?    (4 pts) 

Hint: it won’t work. 

b. The ground state angular wavefunction of the 2px orbital is:  

ψ2𝑝𝑥
(θ, ϕ) =

√3

2√𝜋
sin(θ)cos(ϕ) 

Can you integrate it to show that it is normalized: ∫ ∫ |ψ2𝑝𝑥
(θ, ϕ)|

2π

0
∂θ ∂ϕ

2π

0
= 1?    (4 pts) 

Hint: it still won’t work. 

c. Now repeat your effort from pt. a to show that: ∫ ∫ |ψ2𝑝𝑧
(θ, ϕ)|

2π

0
𝐬𝐢𝐧 (𝛉) ∂θ ∂ϕ

2π

0
   (5 pts) 

d. Now repeat your effort from pt. b to show that ∫ ∫ |ψ2𝑝𝑥
(θ, ϕ)|

2π

0
𝐬𝐢𝐧 (𝛉) ∂θ ∂ϕ

2π

0
   (5 pts) 
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11. a. 3D Integrals! The ground state 1s radial wavefunction of the hydrogen atom is:  

ψ(r) =
1

π
1

2⁄ (a0)
3

2⁄
e
−r

a0⁄  

Can you integrate the wavefunction to show that it is normalized, i.e. ∫ |ψ(r)|2
∞

0
∂r = 1? Hint: it won’t work. 

            (5 pts) 

b. Try to repeat your effort from pt. a to show that ∫ |ψ(r)|2
∞

0
𝟒𝛑𝐫𝟐 ∂r = 1    (5 pts) 

12. Can you propose why, in questions 1 and 2, the addition of 4πr2sin (θ) resulted in the wavefunctions appearing 

to be properly normalized?          (5 pts)

 

Answer: This factor is a Jacobian, and it is necessary to use it in 3D integrals. 

13. In class it was discussed how the px and py orbitals come about from addition or subtraction of the m=±1 spherical 

harmonics. Now let’s do the d-orbitals. Table 1 lists the spherical harmonic (3D rigid rotor wavefunctions). Can you 

fill out Table 2 with the proper descriptions of d-orbital states as well as identifying them?  

Hint: x = r ⋅ cos(ϕ) sin( θ), y = r ⋅ sin(ϕ) sin( θ), and z = r ⋅ cos(θ). 

Table 1: 

Yl=2,m=0 3 ⋅ cos2(θ) − 1 

Yl=2,m=1 cos(θ) ⋅ sin(θ) ⋅ eiϕ 

Yl=2,m=-1 cos(θ) ⋅ sin(θ) ⋅ e−iϕ 

Yl=2,m=2 sin2(θ) ⋅ e2iϕ 

Yl=2,m=-2 sin2(θ) ⋅ e−2iϕ 

Table 2:            (8 pts) 

 result d-function 

r2×Yl=2,m=0 a. a. 

r2×(Yl=2,m=2 + Yl=2,m=-2) r2 ⋅ sin2(θ) (cos2(ϕ) − sin2(ϕ)) x2-y2 

r2×(Yl=2,m=2 - Yl=2,m=-2) b. b. 

r2×(Yl=2,m=1 + Yl=2,m=-1) c. c. 

r2×(Yl=2,m=1 - Yl=2,m=-1) d. d. 

Double Hint: sin(2x) = 2sin(x) cos( x). 

 

  


