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Chapter 13. Potential Surfaces and the Heisenberg Uncertainly Principle.  

Inarguably the most recognized statement in quantum mechanics is, “You can’t know where 

something is and how fast it is going”, which is the Heisenberg uncertainty principle. However, 

the real meaning is more far-reaching and unfortunately complex than this statement reveals. The 

uncertainty principle exists due to the statistical nature of quantum mechanics, and the fact that 

different physical properties are connected to each other by the quantum mechanical operators 

that describe them. Furthermore, the Heisenberg uncertainty principle is dynamic. For example, 

let’s say that you know a quantum particle is trapped in a very small spot. As a result, you can’t 

know the velocity at all, which makes the speed (and kinetic energy) very high. Last, there are 

actually several different uncertainty principles beyond the famous one between position and 

speed.  

Before we go further, we must first introduce more complex systems to study, which is 

dependent on the nature of the potential energy surface. In the process, we will understand why 

some dyes are red or green, discuss new materials such as “quantum dots”, and reveal new 

phenomenon such as tunneling.  

13.1 Potential Energy Surfaces.  

13.1.1 The step. In the previous chapter we discussed the simplest potential surface 

possible, a one-dimensional flat surface that never ends. This was called the “freewave” 

example. Unfortunately, the Universe is usually quite a bit more complicated because potential 

energy exists and may look like a bumpy barrier or curvy parabola. Introduced here is literally 

the first step towards understanding more complex problems: the step potential shown in Figure 

13.1. To the left is a flat potential 

energy surface; however, at x=0 a 

“bump” in the form of a finite 

barrier appears that continues to 

the right forever. The potential 

surface requires that the 

Schrödinger equation be solved in 

two parts, one for the particle left 

of the barrier or to the right: 
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x < 0 (left):                            
−ℏ2

2m

∂2

∂x2
ψI(x) = E ∙ ψI(x) 

x > 0 (right):     
−ℏ2

2m

∂2

∂x2
ψII(x) + V0 ∙ ψII(x) = E ∙ ψII(x) 

As a result we have to solve the Schrödinger equation twice. However, it is important to note that 

there is just one wavefunction that has a single energy. Furthermore, the wavefunction must be 

smooth and continuous.  

The potential energy surface is flat to the left of the barrier, and we already know that the 

proper wavefunction for a flat potential is the “freewave”: 

ψI = A ∙ eik1x + B ∙ e−ik1x 

The wavevector k1 can be found by rearranging the Schrödinger equation: 
∂2

∂x2 ψI(x) =
2mE

ℏ2 ∙

ψI(x), which makes k1 = √
2mE

ℏ2 . Now as for the 2nd region, we first rearrange the Hamiltonian 

as: 

x > 0 (right):     
−ℏ2

2m

∂2

∂x2
ψII(x) = (E − V0) ∙ ψII(x) 

Here we see that the Schrödinger equation to the right of the barrier is no different that to the left, 

albeit with a reduced energy due to the potential. Furthermore, the potential surface to the right is 

flat, so the same “freewave” solution applies albeit with a different momentum wavevector k2: 

ψII = C ∙ eik2x + D ∙ e−ik2x 

The wavevector k2 can be found by simply replacing "E" in k1 with (E − V0): k2 = √
2m(E−V0)

ℏ2 . 

It is apparent that k2 < k1, and as a result if the particle has enough energy to cross the barrier the 

transmitted wavefunction’s de Broglie wavelength must increase. This makes sense since the k’s 

are related to the kinetic energy, which is the difference in the total energy minus the potential 

energy. Hence, when the particle crosses the barrier into region II it must be moving slower, 

which is evident from the longer wavelength.   

13.1.1.1 Reflection and transmission. The next step is to question what can be learned 

from the finite step problem? The utility of this example is that it shows what happens when a 

quantum mechanical particle encounters a barrier. Up until now, you have been told that if a 

moving mass has enough kinetic energy it will traverses over a potential hill. Here, we will show 

you that light quantum mechanical particle such as an electron isn’t as cooperative. 
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First, we create a model whereby a 1-dimensional universe is created with a particle to 

the right of the barrier. The particle is thrown at the barrier, giving it a positive amount of 

momentum and energy. A wavefunction that describes a right-moving particle is: 

ψI(x) = A ∙ eik1x 

When the particle strikes the barrier at x=0 it may reflect off of it, resulting in leftwards 

movement with the same kinetic energy and momentum due to conservation laws. Thus, the 

wavefunction in region I is: 

ψI(x) = A ∙ eik1x + B ∙ e−ik1x 

If the particle transmits over the barrier it can only continue on to the right: 

ψII(x) = C ∙ eik2x 

If you wonder why there is no leftward moving e−ik2x “D-wave” in region 2, it’s because there 

are no other barriers in that region to reflect off of. As a result, if the particle crosses into region 

II it will forever more move to the right. We refer to the expression A ∙ eik1x as the incoming “A-

wave”, B ∙ e−ik1x  as the reflected “B-wave” and C ∙ eik2x as the transmitted “C-wave”. This is 

because the probability amplitude of the incoming wave is: 

|A ∙ eik1x|
2
= |A|2 ∙ e−ik1x ∙ eik1x = |A|2 ∙ e0 = |A|2 

The probability of reflecting is related to |B|2 and likewise the probability of transmission is 

related to |C|2.  

The finite step potential can be used to calculate whether a quantum object transmits 

through or reflects off of a barrier. The reflection is the probability that a wave turns left divided 

by the probability it was moving right to begin with. Due to the fact that the absolute value of a 

wavefunction is related to probability we can define the reflection (R) as: R =
|B|2

|A|2
 and thus we 

must find expressions for the coefficient A and B as a function of energy. First, we invoke a 

stipulation that wavefunctions must be smooth and continuous at x=0, which is the boundary of 

the step potential. This gives us two equations to solve for our two unknowns: 

ψI,(x=0) = ψII,(x=0) (continuous) and: 
𝜕ψI,(x=0)

𝜕𝑥
=

𝜕ψII,(x=0)

𝜕𝑥
 (smooth)    

While these relationships are enough for us to solve the problem, there is a shortcut that is very 

helpful. What you do is to divide the smooth equation: ψI
′ = ψII

′ by the continuous one: ψI =

ψII at the boundary: 
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ψI
′
(x=0)

ψI(x=0)

=
ψII

′
(x=0)

ψII(x=0)

 

(For those readers who are mathematically inclined, this is the log derivative ∂ln(ψ) =
ψ′

ψ
) 

When we insert the equations and make x=0 we are left with:  

A ∙ ik1e
0 − B ∙ ik1e

0

A ∙ e0 + B ∙ e0
=

C ∙ ik2e
0

C ∙ e0
 

Since e0 = 1 and the C’s on the right cancel:  

k1A − k1B = k2A + k2B 

which can be rearranged to reveal:  

B

A
=

k1 − k2

k1 + k2
=

√E − √E − V0

√E + √E − V0

 

To study this result we must create a model with realistic parameters. As such, we describe an 

electron (m=9.109×10-31 kg) striking against a V0 =1 electron volt step (an electron volt is the 

energy an electron experiences travelling through a 1 Volt potential, 1 eV = 1.602 × 10−19 J). 

Plotted in Figure 13.2 is the reflection and transmission as a function of the energy of the 

particle, where the transmission is simply 1-R. If the particle’s energy is less than the 1 eV 

barrier then it will always reflect. This makes sense, and mathematically results from the fact that 

√E − V0 is an imaginary number which makes R=
(k1−k2)∙(k1−k2)

∗

(k1+k2)∙(k1+k2)∗
=

E+E−V0

E+E−V0
= 1. However, if 

the particle has enough energy to get over a 

barrier, it may or may not! The only thing 

that the particle can do to improve the odds 

of transmission is to strike the barrier with 

as much energy as possible.  

13.1.1.2 Wavefunctions. The fact 

that k2~√E − V0 is an imaginary number if 

E < V0 has implications for the 

wavefunction in region II. If we substitute 

k2 = i ∙ k2
′ , where k2

′  is a real positive 

number into the wavefunction we find: 
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ψII(x) = C ∙ e𝑖2∙k2
′ x = C ∙ e−k2

′ x 

Here we see that the wavefunction is exponentially decaying into the barrier. This is why the 

reflection has to be 100%, because the particle can’t keep moving to the right into region II. It is 

interesting to note that the particle has some probability to travel though the barrier even though 

it doesn’t have the energy to move into region II at all. We next ask, what if the barrier was thin 

such that the particle’s wavefunction didn’t completely decay before exiting the other side? 

13.1.2 The finite barrier and tunneling. The next step up in complexity is the step 

potential that steps back down after a length of L. As shown in Figure 13.3, we might find that a 

particle wavefunction with an energy less than the potential might not decay to 0 before it 

reaches the end of the barrier. This means that the particle has some probability to travel through, 

despite not having enough energy to do so, and continues on to the right forevermore. This is 

called tunneling, and you may have heard that this phenomenon means you can walk through a 

door. This is in fact true; however, the probability that you can do so is exceptionally low.  

 As in the previous example there are three regions; to the left are the on-coming A-wave 

and the reflected B-wave. In region III we find the transmitted E-wave, ψIII(x) = E ∙ eik1x, 

which represents the particle that has tunneled through the barrier. In between are the “C” and 

“D” waves, where the C-wave represents the particle penetrating the front of the barrier while the 

D-wave is a reflection off the back end. You might wonder why there is a D-wave, after all, the 

particle isn’t encountering a higher potential barrier. The reason that the D-wave exists is 

because all interfaces cause reflection, even when one traverses from a higher potential to a 

lower one. For example, you can see your reflection in a car with new black paint, right? This is 

the same phenomenon.  

The transmission 

probability is T =
|E|2

|A|2
, and to 

calculate it we must determine all 

the wavefunctions’ coefficients as 

a function of energy. This can be 

done using the boundary 

conditions for smooth and 

continuous wavefunctions at 
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positions x=0 and x=L. 

Unfortunately, this is a very time-

consuming calculation due to the 

overuse of algebraic manipulation, 

and we won’t go through that here. 

Rather, we simply present the end 

result in Figure 13.4. Unlike the 

step potential, there is a small 

chance for transmission to occur 

for energies less than the barrier 

due to tunneling as discussed 

previously; this is highlighted in 

green in Figure 13.4. At the same 

time, transmission is not assured if 

there is enough energy to go over the barrier is in the step potential. Most interesting of all is the 

wavy structure in the transmission as a function of increasing energy see in Figure 13.4. 

Occasionally the transmission reaches 100%; these are called “resonances” and they occur when 

the particle’s de-Broglie wavelength is the same as the length of the barrier. Such behavior is 

frequently observed in sophisticated spectroscopy experiments, especially in X-ray studies of gas 

atoms and molecules.  

13.1.3 The particle in a box. The next model problem on our list is the “particle-in-a-

box”, which has a potential energy surface defined in three regions by:  

x < 0        V(x) = ∞ 

0 ≤ x ≤ L   V(x) = 0     

x > L        V(x) = ∞ 

This surface is shown in Figure 13.5. We seek a solution to the Schrodinger equation in the form 

of a wavefunction, which must be 0 everywhere outside the box because the particle couldn’t be 

found there unless it has an infinite amount of kinetic energy. Thus, we don’t need to concern 

solving the wavefunctions anywhere except region II, the interior of the box. Since region II has 

a flat potential surface, the wavefunction must be the same as the freewave solution:  

ψII(x) = A ∙ eik∙x + B ∙ e−ik∙x 
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The coefficients A and B must be determined, as well as the wave vector k. Defining a 

wavefunction in such a manner is generally resolved by satisfying boundary conditions; 

additionally the wavefunction must be normalized. For example, the fact that a wavefunction 

must be continuous requires that ψ = 0 at the left (x=0) and right sides (x=L) of the box. The 

fact that the wavefunction must disappear at x=0 requires: 

A ∙ e0 + B ∙ e0 = 0 

and as a result B = −A. This implies that the wavefunction is a sine wave as sin(k ∙ x) = A ∙

eik∙x − A ∙ e−ik∙x if A =
1

2i
. Thus, the boundary condition reveals that: 

ψII(x) = sin(k ∙ x) 

Now we have to apply the second boundary condition at x=L: 

sin(k ∙ L) = 0 

This can only be true if k1L = nπ, allowing us to solve for the wave vector: 

k =
nπ

𝐿
 

where n is an integer that goes from 1,2,3… As a result, the wavefunction is:  

ψII(x) = N ∙ sin (
nπ

L
x) 

and 0 everywhere else due to the infinite potential.  

13.1.3.1. Orthonormalization. The last piece of the puzzle is to solve for N, the 

normalization constant. To go about this, we write the condition for normalization ∫|𝜓|2 = 1 

and insert the result thus far: 

N2 ∫sin2 (
nπ

L
x) ∂x

L

0

= 1 

which allows N to be defined as: 

N =
1

√∫ sin2 (
nπ
L x) ∂x

L

0

 

We solved the integral by looking it up on the internet: ∫ sin2 (
nπ

L
x) ∂x

L

0
=

𝐿2

4
, which means N =

√
2

L
 and the full particle in a box wavefunction is: ψII(x) = √

2

L
sin (

nπ

L
x). These wavefunctions 

are also orthogonal to each other: ∫ψυ′
∗ ψυ 𝜕x = 𝛿υ′,υ, where 𝛿υ′,υ is the Kronecker delta 
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function that is 𝛿υ′,υ = 1 if υ′ = υ, which is the normalization condition, and 𝛿υ′,υ = 0 if υ′ ≠ υ. 

This is a result of the fact that the Hamiltonian is a Hermitian operator (see Ch. 12, section 

12.4.5). 

13.1.3.2 Energy levels. In our previous examples, we were able to solve the wavefunction 

for any value of energy. As a result, these models are called “unbounded”. The particle in a box 

energy is different, we can see after it is calculated from the Hamiltonian acting on the 

wavefunction via  Ĥψ = Eψ: 

−ℏ2

2m

∂2

∂x2
√

2

L
sin (

nπ

L
x) =

ℏ2n2π2

2mL2
√

2

L
sin (

nπ

L
x) = E ∙ ψII(x) 

and thus: 

E =
n2ℏ2π2

2mL2
=

n2h2

8mL2
 

where we used the fact that ℏ2 =
h2

4π2
. Given that n is an integer, we see that the particle in a box 

cannot have just any energy. There are gaps between the ground state (n=1) and the 1st excited 

state (n=2), which is why we refer to the system as “bounded”. The energy comes in discrete 

steps, or quanta, which is where quantum mechanics gets its name! Anther facet of quantum 

mechanics is the need for an integer quantum number, here n, which can delineate the ground 
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state from all the excited states. Quantum numbers will appear in all the systems we will study 

from now on and are usually part of the equation for energy. It is interesting to note that the 

ground state has some finite kinetic energy, called the “zero point energy”. As we will discuss 

later in this chapter zero point energy is due to the Heisenberg uncertainty principle.  

The particle in a box describes several phenomena, many of which can be seen with your 

own eyes! Shown in Figure 13.5B are the spectra of several cyanine dyes, which reveal lower 

energy absorptions as the dye becomes longer. An analogy can be made that the number of 

alternating double bonds in the center of the cyanine molecule is the same as the length L of the 

particle in a box. It should be noted that the absorptions are not related to the energy of a single 

quantum level, rather, the differences between the ground and 1st excited state levels. For a 

particle in a box that quantity is: ΔE =
(𝑛=2)2h2

8mL2 −
(𝑛=1)2h2

8mL2 =
3h2

8mL2, which reveals an expected 

1/L2 dependence to the absorption between states as the box size changes.  

Shown in Figure 13.6 is a more dramatic example using nanotechnology, specifically 

semiconductor CdSe quantum dots. The emission of the particles can be tuned to lower (redder) 

energies by increasing the diameter of the particle on the order of just a few nanometers. And as 

solid-state materials, quantum dots are significantly more robust against degradation from the 

environment, which is why they are being incorporated into displays including television sets!  

13.1.3.3 The particle in the finite box. Imagine the particle in a box potential surface 

where the barriers to the outside are not infinite as shown in Figure 13.7A. Note that we have 

centered the box at x=0 for mathematical convenience as you will see. There are two issues to 

consider, namely that there are three regions each of which has a different wavefunction. As in 

the previous example, we will use boundary conditions to solve for the wavefunctions and 

allowed energy levels. Furthermore, it should be noted that there are bound solutions for E<V0, 
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meaning that the energy is quantized into discrete 

values. For energies greater than the potential trap 

(E>V0) the solutions are unbound, meaning that the 

wavefunctions are just waves and any energy is 

allowed. We won’t consider that situation and will 

instead only study the case where E<V0.  

Let’s first attempt to solve the ground state 

wavefunction. The potential has even symmetry 

about x=0, and as such we assume that the trap 

region also has even symmetry like a cosine function. As a result, ψII(x) = B ∙ cos(k2x), where 

the wavevector k2 = √
2mE

ℏ2 . If the particle penetrates into the barrier region I on the left it will 

continue in that direction, implying ψI = A ∙ ek1∙x where k1 = √
2m(V−E)

ℏ2 . Using the same logic 

ψIII = C ∙ e−k1∙x. As per the boundary conditions, the wavefunctions must be continuous and 

smooth at the region I/II boundary: 

A ∙ e−k1∙L 2⁄ = B ∙ cos (−k2
L

2
)  and  k1 ∙ A ∙ e−k1∙L 2⁄ = −k2 ∙ B ∙ sin (−k2

L

2
) 

and likewise for region II/III: 

B ∙ cos (k2
L

2
) = C ∙ e−k1∙L 2⁄   and  −k2 ∙ B ∙ sin (k2

L

2
) = −k1 ∙ C ∙ e−k1∙L 2⁄  

Solving using log boundary conditions yields what is called a “transcendental” equation for k1 

and k2: 

tan (k2

L

2
) =

k1

k2
 

The relationship above requires you to define the model system (length of the box, potential 

height, and mass of the particle) and then search for energies that equate the two sides using a 

computer. Once you know the allowed energies you can determine the A, B etc. coefficients and 

then plot the wavefunctions as shown in Figure 13.7A. 

This model system can be applied to understand many real phenomena and can also be 

used to describe electrons in atoms. For the latter case, this works because an electron sees a 

hydrogen’s proton like a trap- Coulomb’s law keeps it close by since there is a huge energy 

penalty to be far away. The finite box can give us an idea about how chemical bonds work if we 
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allow two boxes to get close to each other. Shown in Figure 13.7B are the ground and 1st excited 

states for a particle between two finite boxes. It can be seen that the wavefunction “bunches” 

between the two traps in the ground state while a node prevents the same in the excited state. 

This represents ground state bonding and excited state antibonding orbitals! 

13.2. Complex Potential Energy Surfaces: Vibration. We now take our first step into 

non-flat potential surfaces by studying the quantum mechanics of springs; this is called the 

harmonic oscillator problem. Incidentally, chemical bonds work just like springs. Two atoms 

form a bond along the “x” direction, with an equilibrium bond distance of x0. Any displacement 

from equilibrium results in a linear restoring force: F = −
∂V

∂x
= −kf(x − x0), the strength of 

which is dictated by the spring constant kf. Since we want to know the potential energy V as a 

function of the position we note that 
∂V

𝜕𝑥
− −𝐹(𝑥) and integrate as follows: 

∫∂V = V(x) = −∫−kf(x − x0)𝜕𝑥 =
1

2
kf(x − x0)

2 

To place this in a quantum mechanical context we simply insert the position operator x̂ as so: 

V̂ =
1

2
kf(x̂ − x0)

2 , which likewise makes the potential energy an operator. And while we are 

ready to put this into the Schrödinger equation, however, before we do so there is a very small 

change that significantly simplifies everything. This is to simply drop the equilibrium distance x0 

from the potential energy operator as shown here:  

V̂ =
1

2
kf(x̂ − x0)

2 →
1

2
kfx̂

2 

The implication is that the position operator x̂ is now interpreted as the bond’s displacement 

away from equilibrium. Thus, a positive 〈x̂〉 means that the bond is stretched and a negative 〈x̂〉 

means compressed. There is one more issue to examine, which is the fact that the kinetic energy 

operator 
−ℏ2

2m

∂2

∂x2 has the familiar factor of mass. However, when describing vibrational motion 

between two bonded atoms then it is no longer clear which atom’s mass should be used. The 

solution is to use the reduced mass: μ =
m1∙m2

m1+m2
, where m1 and m2 are the masses of atoms 1 and 

2, respectively. 

13.2.1.1 Wavefunctions. With knowledge of the Schrodinger equation:  
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υ Hυ There is an interesting mathematical relationship that 

can be demonstrated with Hermite polynomials: 

Hυ+1 =
2x

𝛼
∙ Hυ − 2υ ∙ Hυ−1 

This is called a recursion and allows all the Hermite 

polynomials to be determined with just the first one: 

Hυ=0 = 1. 

0 1 

1 2x

𝛼
 

2 4x2

𝛼2
− 2 

3 8x3

𝛼3
−

12x

𝛼
 

Table 13.1 Hermite polynomials.  

−ℏ2

2μ

∂2

∂x2
ψ(x) +

1

2
kfx̂

2 ∙ ψ(x) = E ∙ ψ(x) 

we are ready to solve for the wavefunction ψ. This effort is somewhat complex; as such, we will 

simply assure you that the mathematics are tractable and that the wavefunctions are as shown in 

Figure 13.8. These solutions can be succinctly described using the following formula: 

ψυ(x) = NυHυe
−x2 2α2⁄  

where α = (
ℏ2

μkf
)

1

4
 , υ → 0,1,2… is the principal quantum number, Nυ = (

1

υ!2υα√π
)

1

2
 is the 

normalization constant, and Hυ are the Hermite polynomials listed in Table 13.1.  

Let’s turn our attention to the 

ground state wavefunction which has a 

bell-shape as shown in Figure 13.8. 

Subsequent excited states have 

additional nodes due to the Hermite 

polynomials; these increase the 

curvature and thus the kinetic energy of 

each state. Note how, in calculus, the 

double derivative found in the kinetic 

energy operator is called the “curvature” 

of a function! The Hermite polynomials 
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also assures that the wavefunctions are orthogonal to each other.  

There are many other quantum mechanical properties to examine, including the fact that 

〈x̂〉 = ∫ψυ
∗ ∙ x ∙ ψυ 𝜕x = 0 regardless of the state. From this we learn that the bond is on average 

at the equilibrium bond length, even in highly excited states. Calculation of the energy E as a 

function of principle quantum number υ reveals the relationship: E(υ) = (υ +
1

2
) ℏω, where ω is 

the angular frequency: ω = (
kf

mass
)

1

2
. An important implication is the fact that the ground state 

has energy is finite: Eυ=0 =
1

2
ℏω. Like the particle in a box this is the zero-point energy, and it 

means that the atoms are always vibrating. There are other interesting analogies to the particle in 

a box problem; the wavefunctions look surprisingly similar including the way they pick up 

additional nodes in each excited state. One significant difference is that the harmonic oscillator 

energies are linear with the principal quantum number, E ∝ υ, whereas the particle in a box is 

quadratic in proportion to its principal quantum number, E ∝ n2.  

13.2.1.2 Kinetic Isotope Effect and Turning Points. An interesting implication of the 

zero-point energy is that it is inversely proportional to the reduced mass. This has an effect on 

the rate of a chemical reaction as dictated by the ∆G∗ barrier. Take for example the breaking of a 

carbon-hydrogen (R3C-H) bond. Given that the reduced mass is less for a C-H bond vs. the 

deuterated analog C-D, there is a smaller barrier for the C-H bond to break as shown in Figure 

13.9 A. As a reaction rate is proportional to the barrier k~e−∆G∗
  (like the Arrhenius equation), 

the relative rates of reaction involving a proton are generally faster to the same with deuterium 

according to the formula: 

kCH

kCD
~

e−∆GCH
∗

e−∆GCD
∗  

While this ratio can be as 

high as 8×, in reality there 

are many other factors in 

play and as such the 

kinetic enhancement can 

be less. Regardless, the 
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kinetic isotope effect is quite useful because it gives organic chemists a method to investigate 

which bonds break in a reaction. Thus, it is often used for mechanistic analysis.    

The wavefunction shown in Figure 13.8 are for a carbon monoxide molecule, which has a 

high spring constant kf=1860 N/m. As such, the bond doesn’t stretch far as evident from the fact 

that the wavefunctions do not have significant amplitude past ~1/2 Bohr, where a Bohr is a unit 

of length and is equal to 0.53 Å. In contrast, I2 has a very weak bond as evident from a kf=170 

N/m, and as such it can stretch almost twice as much as CO. Regardless of how strong a bond is, 

the atoms have a way of stretching further than they should as revealed by the vibrational 

potential energy surface and ground state wavefunction shown in Figure 13.9 B. The point where 

the total energy is equal to the potential, where there must be no more kinetic energy: 

1

2
ℏω =

1

2
kf ∙ xtp

2 → xtp = ±√
ℏω

kf
 

This is marked in the figure as the turning point (xtp), which is where a normal spring would 

stretch to the point where it stops and starts to compress back. However, this isn’t true for the 

quantum mechanical spring, as the wavefunction has some finite value for any x. As a result: 

∫|ψυ=0|
2 ∂x

∞

xtp

= 0.078 

Consequently, there is ~8% chance that a bond will stretch past the point of having no kinetic 

energy, which is analogous to tunneling discussed previously. Does this mean that the kinetic 

energy is in fact negative? What does negative kinetic energy motion look like? This is one of 

the wonders of quantum mechanics as there is no analogy to our everyday experiences that 

would help describe this. 

13.3 Uncertainty and Superposition: Wavefunctions as Waves. The uncertainty 

principle, “you can’t know where something is and how fast it is going,” is one of the most 

important aspects of quantum mechanics. In our explanation of this phenomenon, we will study 

bell-shaped wavefunctions that are centered inside a box that goes from 0 ≤ x ≤ L: 

ψ(x) =
1

(2πσ2)
1

4⁄
e
−(x−L 2⁄ )2

4σ2  
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We will analyze two different wavefunctions, a narrow one that we call “localized” and a wide 

one that we call “delocalized”. Hopefully it is intuitively clear that there is more certainty in the 

position of the localized wavefunction compared to the delocalized state.  

In the previous chapter we introduced the idea that an eigenfunction ψ of one operator can 

be expressed as a linear combination of the eigenfunctions Φn of a different operator. This is 

called a superposition: 

ψ = ∑cn ∙ Φn

𝑛

 

and for our purposes we will make all the Φn’s freewave states:  

Φn = eiknx 

were the wavevector k is defined so that the freewaves fit in the box: kn =
nπ

L
 and n = ±1, ±2, ±3, 

etc. The bell-shaped wavefunctions and the freewaves are all graphed in Figure 13.10. 

An example of a superposition is shown in Figure 13.11, where we see that the wider 

delocalized bell-shaped state can be equated to a sum of wave states weighted by an appropriate 

constant. Here only three waves are needed to create a superposition that appears identical to the 

delocalized function as shown in Figure 13.11. A very different result is observed with the 

localized state shown in Figure 13.12. Here, it is necessary to sum at least 5 wave states to 
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provide a reasonable representation of the localized function. Even then the overlap isn’t as good 

as observed with the delocalized state in Figure 13.11 despite the fact that more functions were 

used!  

Now you are probably asking- what any of this has to do with the uncertainty principle? To 

answer, let’s now measure the momentum of the localized and delocalized states. The 

measurements require us to do an experiment, and we will be repeat the experiment several times 

to statistically quantify the average value and standard deviation which is the uncertainty. This is 

necessary because it is reasonable to expect some variation in the measurements from 

experiment to experiment. In fact, we contend that each measurement will return the momentum 

of one of the wave states, which is ℏkn = ℏ ∙
nπ

L
, with a probability |cn|

2. Thus, measuring the 

momentum from the delocalized state will return one of the three composing wave state’s 

momenta with corresponding probabilities of |c1|
2, |c2|

2, or |c3|
2. We can also calculate the 

expectation value of the momentum via: 
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〈p〉 = |c1|
2 ∙ ℏk1 + |c2|

2 ∙ ℏk3 + |c3|
2 ∙ ℏk5 

In contrast, when the same experiment is repeated on the localized state, each measurement 

returns one of five values of wave momenta with corresponding probabilities of |c1|
2, |c2|

2, |c3|
2, 

|c4|
2, or |c5|

2.   

Do you have more or less confidence in the measurement of the momentum of the 

delocalized vs. localized state? Of course, there is greater certainty for the delocalized state since 

each measurement returns one of just three values, and probably we won’t have to make too 

many measurements before we are comfortable with the average. However, measuring the 

localized state is problematic since the result varies more from experiment to experiment! This is 

due to the fact that the experiment samples from five different wave states, and thus we will have 

to make more measurements to have the confidence in the result. We conclude that the certainty 

in position is anticorrelated to the certainty in momentum. This is in fact the Heisenberg 

uncertainty principle, “you can’t know where something is and how fast it’s going at the same 

time.” Mathematically, this is expressed by the variance in the function, the square root of which 

is the standard deviation () you may recall from your introduction into statistics; more on this 

later.  

The above demonstration involved some approximations and was meant to give you a 

graphical description of uncertainty in quantum mechanics. Now, we must slog through more 

rigorous mathematics. First, let’s define uncertainty via the variance, and we will start with the 

variance in position: 

〈Var(x̂)〉 = 〈
1

N − 1
∑(x − x̅)2

N

i=1

〉 = 〈x̂2〉 − 〈x̂〉2 

You may be familiar with this formula from your first introduction to statistics, and also note that 

the expressions 〈x̂〉 and 〈x̂2〉 are expectation (average) values. Let’s calculate the variance in the 

position for our bell-shaped wavefunction: ψ(x) =
1

√2πσ
e

−(x−
L
2
)
2

2σ2  using the x̂ and x̂2 operators. 

〈x̂〉 = ∫ ψ∗ ∙ x̂ ∙ ψ ∙ ∂x

∞

−∞

= ∫ (
1

(2πσ2)
1

4⁄
e
−(x−

L
2
)
2

4σ2 )

∗

∙ x ∙
1

(2πσ2)
1

4⁄
e
−(x−

L
2
)
2

4σ2 ∙ ∂x

∞

−∞
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=
1

√2πσ2
∫ x ∙ e

−(x−
L
2
)
2

2σ2 ∙ ∂x

∞

−∞

=
L

2
 

Next:  

〈x̂2〉 =
1

√2πσ2
∫ x2 ∙ e

−(x−
L
2
)
2

2σ2 ∙ ∂x

∞

−∞

= σ2 + (
L

2
)
2

 

As a result: 〈x̂2〉 − 〈x̂〉2 = σ2 + (
L

2
)
2

− (
L

2
)
2

= σ2. This is a perfectly sensible result, and in fact 

it is a standard statistical definition that the variance of a bell-shaped curve is σ2!  

Let’s determine the variance in momentum, var(p̂) = 〈p2〉 − 〈p〉2: 

〈p̂〉 = ∫ ψ∗ ∙ p̂ ∙ ψ ∙ ∂x

∞

−∞

= ∫ (
1

(2πσ2)
1

4⁄
e
−(x−

L
2
)
2

4σ2 )

∗

∙
ℏ

i

∂

∂x

1

(2πσ2)
1

4⁄
e
−(x−

L
2
)
2

4σ2 ∙ ∂x

∞

−∞

= 

ℏ

i√2πσ2
∫ e

−(x−
L
2
)
2

4σ2 ∙
∂

∂x
e
−(x−

L
2
)
2

4σ2 ∙ ∂x

∞

−∞

=
ℏ

i√8πσ3
∫ (x −

L

2
) ∙ e

−(x−
L
2
)
2

2σ2 ∙ ∂x

∞

−∞

= 0 

No average momentum, which shouldn’t be interpreted as the particle not moving. Rather, the 

particle can move left or right equally averages out to 0. Next, calculating the average of the 

momentum squared takes a bit more effort: 

〈p̂2〉 = ∫ ψ∗ ∙ p̂2 ∙ ψ ∙ ∂x

∞

−∞

= −ℏ2 ∫ (
1

(2πσ2)
1

4⁄
e
−(x−

L
2
)
2

4σ2 )

∗

∙
∂2

∂x2

1

(2πσ2)
1

4⁄
e
−(x−

L
2
)
2

4σ2 ∙ ∂x

∞

−∞

= 

−ℏ2

√2πσ2
∫ e

−(x−
L
2
)
2

4σ2 ∙
∂2

∂x2
e
−(x−

L
2
)
2

4σ2 ∙ ∂x

∞

−∞

=
−ℏ2

√32πσ5
∫ (

L2

4
− 2σ2 − Lx + x2) ∙ e

−(x−
L
2
)
2

2σ2 ∙ ∂x

∞

−∞

=
ℏ2

4σ2
 

As a result, the variance in momentum is: 〈p̂2〉 − 〈p̂〉2 =
ℏ2

4σ2 − 02 =
ℏ2

4σ2 

The results reveal that the uncertainty in position and momentum are anticorrelated; the 

position uncertainty scales as σ2, however, the momentum uncertainty is inversely proportional 

to σ2. Thus, if the particle is localized in position then there is an increasing uncertainty in 

momentum. This becomes clearer when we multiply the two variances: 

Var(x̂) ∙ Var(p̂) = σ2
ℏ2

4σ2
=

ℏ2

4
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which results in a constant. This is, in fact, the mathematical version of the Heisenberg 

uncertainty principle. 

13.3.1 The Heisenberg Uncertainty Principle. There is a math theorem that can assist 

us with understanding the previous example called the Cauchy-Schwartz inequality. It is 

analogous to the fact that a dot product between two vectors: a⃗ ∙ b⃗ = |a||b|cos(θ), is equal to or 

less that |a||b| due to the fact that the maximum cos(θ) can be is 1. This concept allows us to 

express the Heisenberg uncertainty principle as an equation: 

Var(x̂) ∙ Var(p̂) ≥
1

4
|〈[x̂, p̂]〉|2 

where a new mathematical entity called the commutator appears on the right: 

[x̂, p̂] = x̂ ∙ p̂ − p̂ ∙ x̂ 

The expectation value of the commutator is simply 〈[x̂, p̂]〉 = 〈x̂ ∙ p̂ − p̂ ∙ x̂〉 = 〈x̂ ∙ p̂〉 − 〈p̂ ∙ x̂〉. 

Normally, expectation values have to be evaluated using specific wavefunctions. However, there 

is a simple and general way to evaluate 〈[x̂, p̂]〉. This works by applying a “dummy” ψ on the 

right of the operators, allowing them to act on it and then dividing ψ out on the left: 

〈[x̂, p̂]〉 =
1

ψ
[x̂, p̂]ψ 

Inserting [x̂, p̂] = x̂ ∙ p̂ − p̂ ∙ x̂ and the definition of the momentum operator p̂ =
ℏ

i

∂

∂x
 and x̂ = x 

into the above yields: 

〈[x̂, p̂]〉 =
1

ψ
(x̂ ∙ p̂ − p̂ ∙ x̂)ψ =

ℏ

i

1

ψ
(x ∙

∂

∂x
−

∂

∂x
∙ x)ψ =

ℏ

i

1

ψ
(x ∙

∂

∂x
ψ −

∂

∂x
∙ x ∙ ψ) 

Noting the need for the product rule on the right-hand side results in: 

〈[x̂, p̂]〉 =
ℏ

i

1

ψ
(x ∙ ψ′ − x ∙ ψ′ + ψ) =

ℏ

i

ψ

ψ
=

ℏ

i
 

This can be re-inserted into the expression from our previous formula: 
1

4
|〈[x̂, p̂]〉|2 =

1

4
|
ℏ

𝑖
|
2

=
ℏ2

4
 

to yield:  

Var(x̂) ∙ Var(p̂) ≥
ℏ2

4
 

13.3.1.1 Interpretation. The Heisenberg uncertainty principle states that once cannot 

know position and momentum, or speed, of a quantum mechanical object simultaneously. Better 

knowledge of position increases the uncertainty in momentum, and the only way the uncertainty 
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in momentum can rise is for the average momentum to increase. To understand why, take for 

example a car going 10 miles per hour on average. Do you have more, or less uncertainty in its 

speed compared to a car going 100 mph on average? Of course, there must be greater uncertainty 

in the velocity of the faster moving car because it has considerably more leeway for its 

momentum to vary more. As a result, a greater uncertainty in momentum must be associated 

with greater momentum in general, which also means that the object must have greater kinetic 

energy. Thus, if a delocalized quantum mechanical particle, such as an electron in an aromatic 

ring, becomes localized on a single atom, then it’s kinetic energy must increase. This is why 

quantum particles like to become delocalized if possible, and also describes why the energy of a 

particle in a box increases if the box is smaller: E ∝
1

L2. The Heisenberg uncertainty principle is 

often used to explain nanoscale phenomena including the size dependence of the emission of 

quantum dots shown in Figure 13.6. 

 The commutator [x̂, p̂] = x̂ ∙ p̂ − p̂ ∙ x̂ can be interpreted in a way that makes sense out of 

the uncertainty principle. Since [x̂, p̂] ≠ 0, then 〈x̂ ∙ p̂〉 ≠ 〈p̂ ∙ x̂〉, and as a result measuring the 

position of a particle, and then its momentum, would yield a different result than if you first 

measured momentum and then position! However, there is no “right” way to do this, so the result 

is arbitrary depending on what order the experimentalist happened to use when making 

measurements on small, quantum mechanical particles. Thus, there is uncertainty.  

13.3.1.1 Generalization. The Heisenberg uncertainly principle simply states that, at best, 

the product of the position and momentum variances is no more than 
ℏ2

4
. If one has a specific 

system with a known wavefunction then one has to evaluate the product of var(x̂) and var(p̂) 

directly. In fact we did so in the previous section using the bell-shaped wavefunction and found 

that the equality held for the uncertainty principle: var(x̂) ∙ var(p̂) =
ℏ2

4
. These Gaussian 

functions are considered special as a result and are often referred to as “minimum uncertainty” 

wavefunctions. In some of the problem set questions at the end of this chapter you will find that 

the products of the variances in position and momentum for various particle in a box 

wavefunctions are indeed greater than 
ℏ2

4
.   
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It is important to realize that, while the position / momentum uncertainty principle is 

“famous”, there are in fact a very large number of other examples. For any two operators Ω̂1 and 

Ω̂2 the uncertainty principle states:  

Var(Ω̂1) ∙ Var(Ω̂2) ≥
1

4
|〈[Ω̂1, Ω̂2]〉|

2
 

and as a result there is uncertainty if [Ω̂1 , Ω̂2] ≠ 0. We will find examples using quantum 

rotational motion and when describing the spin angular momentum of electrons. Here is one you 

can try on your own; determine the uncertainty between the position x̂ = x and kinetic energy 

operators KÊ =
−ℏ2

2m

∂2

∂x2
. If you evaluate the uncertainty principle by simplifying the commutator 

using: [x,
−ℏ2

2m

∂2

∂x2] ψ one finds that:  

Var(x̂) ∙ Var(KÊ) ≥
ℏ2

4m
|〈p̂〉|2 

This at first may appear hard to interpret as the commutator is an operator rather than a constant. 

What is meant here is that the uncertainty between position and kinetic energy is dependent on 

the expectation of momentum. Thus, if the particle has no momentum then there is a potential for 

there to be no uncertainty between position and kinetic energy. However, the uncertainty 

increases as the particle is moving faster and faster.  

There is one last implication of the uncertainty principle, which is that the eigenfunctions 

of one operator Ω̂1 cannot be the same as the other operator Ω̂2 if [Ω̂1 , Ω̂2] ≠ 0. This is generally 

a topic that one encounters when studying more advanced quantum mechanical phenomena such 

as rotation, spin angular momentum and the spin-orbit effect discussed in latter chapters. 

Conclusions. In this chapter we showed how increasing the complexity of model systems 

through their potential energy surfaces reveals new quantum phenomena. Specifically, how a 

particle may bounce off a wall even if it is higher than it. Also, quantum particles can tunnel 

through barriers like they have a negative kinetic energy. Furthermore, the kinetic energy of a 

particle increases if we trap it, which is why we can change the color of a quantum dot by 

changing its size. While this chapter discusses most of the basic principles of quantum 

mechanics, in the next few chapters we are going to move away from one dimensional example 

problems and discuss real systems leading up to the hydrogen atom. To do so we have to 

understand how quantum mechanics works in 3D and how to deal with rotational motion.  
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Problems: Numerical 

1. In class, I mentioned that the uncertainty principal “does things”. Here is what I mean; we decomposed the 

particle in a box wavefunctions shown below (A & B) into momentum wave eigenstates (i.e. eik∙x) as shown below: 

 

Recall that, as the “A” state has more uncertainty in position, it can be decomposed into just a few momentum 

waves. However, the “B” state requires more momentum waves, perhaps ~100 of them. Also look at the handout for 

a definitive example that was done with computer analysis. 

a. How does the energy of the momentum waves change? Simply state which momentum wave below has more 

energy and why:           (2 pts) 

 

b. Given your answer in pt. a, which of the two wavefunctions (the delocalized state “A” or more localized state 

“B”) have more kinetic energy and why?        (8 pts) 

Hint: I have made up a table of components 1→5 that have respective energies of 1 J →5 J, and the percent that 

each contributes to states A and B. Use these data to find the average values of energies for states A and B, which 

should give you some insight into how to answer this problem. 

Energy (eV) %A %B 

1 75% 30% 

2 15% 30% 

3 10% 20% 

4 0% 10% 

5 0% 10% 

This should help you understand how increasing the percent of higher energy states will affect the total energy. 

2. In class, I mentioned that the uncertainty principal “does things”. Here is what I mean: 

We decomposed the particle in a box wavefunctions shown below (A & B) into momentum wave eigenstates (i.e. 

eik∙x) as shown below: 
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Recall that, as the “A” state has more uncertainty in position, it can be decomposed into just a few momentum 

waves. However, the “B” state requires more momentum waves, perhaps ~100 of them. Also look at the handout for 

a definitive example that was done with computer analysis. 

a. How does the energy of the momentum waves change? Better yet, just tell me which momentum wave below has 

more energy and why:          (2 pts) 

 

b. Given your answer in pt. a, which of the two wavefunctions (the delocalized state “A” or more localized state 

“B”) have more kinetic energy and why?        (8 pts) 

Hint: I have made up a table of components 1→5 that have respective energies of 1 J →5 J, and the percent that 

each contributes to states A and B. Use these data to find the average values of energies for states A and B, which 

should give you some insight into how to answer this problem. 

Energy (eV) %A %B 

1 50% 30% 

2 30% 20% 

3 20% 20% 

4 0% 15% 

5 0% 15% 

This should help you understand how increasing the percent of higher energy states will affect the total energy. 

3. HCl gas has an absorption at 2990 cm-1; this is one of the highest frequencies that is known in the infrared 

spectrum (the IR range is 200 → 13,000 cm-1). Using this information can you estimate the force constant kf of the 

spring (bond) that connects the H and Cl? Recall that the energy of a harmonic oscillator is E = (υ +
1

2
) ℏω =

(υ +
1

2
) ℏ√

kf

μ
, where μ is the reduced mass: μ =

m1m2

m1+m2
. Hint: The ground state has υ = 0, and 1 cm-1 = 1.986×10-23 

J.  The mass of H is 1 amu and Cl is 35.5 amu.       (7 pts) 

Hint-hint: Did you get ~2050 N/m? Then you forgot that absorption wavelength is due to the difference in energy 

between the 1st excited and ground state (final energy – initial energy).  
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4. Deuterium chloride (DCl) gas has an absorption at 2144 cm-1 in the infrared (the IR range is 200 → 13,000 cm-1). 

Using this information can you estimate the force constant kf of the spring (bond) that connects the D and Cl? Recall 

that the energy of a harmonic oscillator is E = (υ +
1

2
)ℏω = (υ +

1

2
)ℏ√

kf

μ
, where μ is the reduced mass: μ =

m1m2

m1+m2
. Hint: The ground state has υ = 0, and 1 cm-1 = 1.986×10-23 J. The mass of D is 2 amu and Cl is 35.5 amu.

 Hint-hint: Did you get ~2050 N/m? Then you forgot that absorption wavelength is due to the difference in 

energy between the 1st excited and ground state (final energy – initial energy).     (7 pts) 

Problems: Theoretical or Explain in Words  

1. If I have a potential energy surface as shown on the right, then 

the solution to the Schrödinger equation to the left of x=L is: 

ΨI(x) = A ⋅ sin (π ⋅
x

2L
) 

To the right of x=L is: 

ΨII(x) = B ⋅ e−(x−L)2  

a. Why is the wavefunction in region I a sine function? Why not a 

cosine function?     (3 pts) 

b. What is the relationship between constants A and B? (3 pts) 

Hint: This is a derivation question, and the wavefunctions must be continuous. Thus, the “right” wavefunction must 

equal the “left” one at x=L.  

c. Show that the wavefunctions are smooth at x=L.       (3 pts) 

Hint: Now that you know how A is related to B, you can show that the derivatives of the wavefunctions are equal at 

x=L. 

2. If I have a potential energy surface as shown on the right, then the solution to the Schrödinger equation to the left 

of x=0 is: 

ΨI(x) = A ⋅ cos (π ⋅
x

2L
) 

To the right of x=0 is: 

ΨII(x) = B ⋅ e−x2
 

a. Why is the wavefunction in region I a cosine function? Why not a sine function?   (3 pts) 

b. What is the relationship between constants A and B?       (3 pts) 

Hint: This is a derivation question, and the wavefunctions must be continuous. Thus, the “right” wavefunction must 

equal the “left” one at x=0.  

c. Show that the wavefunctions are smooth at x=0.       (3 pts) 

Hint: Now that you know how A is related to B, you can show that the derivatives of the wavefunctions are equal at 

x=0. 

3. I have calculated a wavefunction, in blue, for one of the potential surfaces (red) below. Only one of them is correct- 

can you identify which potential function is correct and please state why?    (7 pts) 
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4. For a free wave hitting a barrier:  

B

A
=

k1 − k2

k1 + k2

 

were k1 is real since k1 =
√2mE

ℏ
 and E is a positive number. However, if E<V, then: k2 =

√2m(E−V)

ℏ
 and is imaginary 

and can be expressed as k2 = i ∙ k2
′ = i ⋅

√2m(V−E)

ℏ
 (note how V and E have switched place when “i” is added). The 

equation for reflection is then: 
B

A
=

k1−i⋅k2
′

k1+i⋅k2
′ . Since the percent reflection is actually

|B|2

|A|2
=

B∗B

A∗A
, please show that reflection 

is always 100% if E<V.          (5 pts) 

5. Consider the following potential energy surface that has an 

infinite potential at x=0: 

a. Which of the wavefunctions below is the correct for region I and 

why?       (5 pts) 

1. cos(k ⋅ x)       2. Sin( k ⋅ x)    3. Eikx      4. E−ikx 

b. Is there any boundary condition that dictates what k is? In other 

words, can k take on any value so long at the correct form (question 

a) is determined?     (3 pts) 

c. If there is no boundary condition that limits the value of k, are there limits on the energy? Please explain, and hint: 

this is basically a freewave problem.   (3 pts) 

6. The “quantum” in quantum mechanics describes when only certain energy levels are allowed. Thus, there are finite 

energy differences between the ground state and other excited states. Not all systems have quantized energy levels. 

Look at the figure below and try to answer the following questions:     (9 pts) 

a. For the free wave: is energy quantized? b. What about the particle in a box? c. What about the particle in a finite 

box, if the energy is > V0 (like the blue wave)? 
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7. The “half-baked well” potential has infinite potential 

energy at x=-L, and a step at x=0:  

a. Which wavefunction below is the correct for region I and 

why? Hint: what stipulation does the infinite potential place 

on the wavefunction? 

1. cos (k1{x + L} −
𝜋

2
) 2. sin( k1 ⋅ x)    

3. eik1x        4. e−ik1x  (5 pts) 

b. In the 1st region, since V=0 the Schrödinger equation is:  

ℏ2k1
2

2m
⋅ ΨI(x) = E ⋅ ΨI(x) 

Solve for k1. Hint: this is just an algebra problem.        (2 pts) 

c. In the 2nd region where the potential step V=V0 exists:  

ℏ2k2
2

2m
⋅ ΨII(x) = (E − V0) ⋅ ΨII(x) 

Solve for k2 in this case.          (2 pts) 

d. The wavefunction ΨII(x) is in a region of constant potential, therefore possible wavefunctions are: 

1. cos (k2{x + L} −
𝜋

2
)             2. sin( k2 ⋅ x)           3. eik2x   4. e−ik2x 

Figuring out which one is correct is a bit harder. Here is how you reason through it: if a particle passes through the 

wall from region 1 into region 2, it will continue moving to the right and do so forever since there are no more walls 

to bounce off of. Therefore, which of the functions above (1-4) correctly describe a particle always moving right?  

            (5 pts) 

e. Now unfortunately we run into two possible solutions for region 2. Let’s say that in region 2: k2 =
√2m(E−V0)

ℏ
, and 

thus the two possibilities are that the particle has more energy that the potential barrier (E > V0) or it has less (E < V0). 

In the former case (E > V0),  ΨII(x) = ei
√2m(E−V0)

ℏ
x
 which is a wave that travels to the right forever. 

If the energy is less than the potential energy, can you justify substituting k2 = i
√2m(V0−E)

ℏ
 for 

√2m(E−V0)

ℏ
? Please 

explain.            (2 pts) 

f. If you plug k2 = i ⋅
√2m(V0−E)

ℏ
 into ΨII(x) =eik2x, does the wavefunction continue to oscillate like a sine or cosine 

or does it behave differently? Please explain your answer.       (4 pts) 
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8. I have drawn here two wavefunctions that are solutions to the half-baked well if the energy of the particle is less 

than V0. Obviously, the wavefunctions are continuous and smooth, which is due to using the “right” energies. To show 

that this is the case, let’s do the following: 

a. Set:  

ΨI(x) = cos (
√2mE

ℏ
{x + L} −

𝜋

2
) 

and:  

ΨII(x) = e
−√2m(V0−E)

ℏ
⋅x

 

equal at x=0.            (2 pts) 

b. Calculate the derivative of ΨI(x) and ΨII(x), and set the two derivatives equal at x=0.   (6 pts) 

c. Divide the equation in b by the equation in a to derive the relationship: 

tan (
√2mE

ℏ
L −

𝜋

2
) =

√(V0 − E)

√E
 

This equation does not allow one to solve for E 

analytically. Basically, you have to plug in numbers for 

L, m, and V0 and then determine what energy E makes 

the left side equals the right side.  (6 pts) 

d. If the mass of the particle is that of an electron, L is 1 

nm, and the barrier is 3 eV, can you show that energies 

E of 4.8492×10-20 J and 1.9146×10-19 J (the same shown 

in the figure) satisfy the relationship in pt. c? (4 pts) 

e. Drawn above are the two wavefunctions for the states 

with E =4.8492×10-20 J and the other with E =1.9146×10-

19 J. How would you describe these two states to a 

student in freshman chemistry?  (4 pts) 

 

 

 

9. I have drawn here two wavefunctions that are solutions to the half-baked well if the energy of the particle is less 

than V0. Obviously, the wavefunctions are continuous and smooth, which is due to using the “right” energies. To show 

that this is the case, let’s do the following: 

a. Set:  

ΨI(x) = cos (
√2mE

ℏ
{x + L} −

𝜋

2
) 
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and:  

ΨII(x) = e
−√2m(V0−E)

ℏ
⋅x

 

equal at x=0.     (2 pts) 

b. Calculate the derivative of ΨI(x) and ΨII(x), and set 

the two derivatives equal at x=0.  (6 pts) 

c. Divide the equation in b by the equation in a to 

derive the relationship: 

tan (
√2mE

ℏ
L −

𝜋

2
) =

√(V0 − E)

√E
 

This equation does not allow one to solve for E 

analytically. Basically, you have to plug in numbers 

for L, m, and V0 and then determine what energy E 

makes the left side equals the right side. (6 pts) 

d. If the mass of the particle is that of a proton, L is 0.1 

nm, and the barrier is 0.1 eV, can you show that 

energies E of 2.4895×10-21 J and 9.6710×10-21 J (the same shown in the figure) satisfy the relationship in pt. c? 

            (4 pts) 

e. Drawn above are the two wavefunctions for the states with E =2.4895×10-21 J and the other with E =9.6710×10-21 

J. How would you describe these two states to a student in freshman chemistry?    (4 pts) 

10. In the particle-in-a-half-baked-

well problem, you see that the 

wavefunction decayed 

exponentially into the barrier when 

E<V as shown on the left. Now the 

question is- what do you think 

happens if the right barrier was 

“thin”, such that the wavefunction 

doesn’t decay to 0 before the end of the barrier as shown here? Please draw and explain your result. (5 pts) 

11. Units! a. In a previous problem, an electron (mass=9.109×10-31 kg) was trapped in a 1 nm (L=1×10-9 m), 3 eV 

(V0= 4.807×10-19 J) potential well. I gave you the ground and excited state energies (4.85×10-20 J and 1.91×10-19 J), 

which I found with: tan (
√2mass∙E

ℏ
∙ L −

π

2
) =

√(V0−E)

√E
 using the Wolfram zeros calculator.  

Now you do the same- please use the equation, with SI units inputted to find the energies that solve the expression 

above. (ℏ = 1.0546 × 10−34J ∙ s) Hint: to answer just send us a screen clip of the website, and most important the 

website won’t work so don’t try too hard!        (3 pts) 

b. The website won’t return any values because the input parameters are too small. To resolve the problem you are 

going to use atomic units, in which ℏ = 1, 
1

4πϵ0
= 1, e2 = 1 (the charge of an electron), length is in Bohrs (=0.0529 

https://www.wolframalpha.com/widgets/gallery/view.jsp?id=b858339e64fa997454dd12f77cb1ece1
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nm), and the mass of an electron is: me = 1. In this system of units energy is in Hartrees, where 1 Hartree = 27.2114 

eV = 4.36×10-18 J. So, if you do the conversions, and re-insert into the tan (
√2mass∙E

ℏ
∙ L −

π

2
) =

√(V0−E)

√E
 equation, the 

website should return the correct answers; please send us a screen shot and verify that the energies are the same as the 

ones I gave.  Hint: the website can crash if you put in more than three significant figures.   (7 pts) 

12. Concerning the finite barrier problem, let’s 

think about what happens when a particle hits a 

barrier (region II) with the same amount of 

energy as the potential energy barrier, i.e. E=V.  

Free wavefunctions in the presence of a flat 

potential are the solution to:  

ĤΨ =
−ℏ2

2m

∂2

∂x2
Ψ(x) + V ⋅ Ψ(x) = E ⋅ Ψ(x)  

which is simplified into: 

−ℏ2

2m

∂2

∂x2
Ψ(x) = (E − V) ⋅ Ψ(x) 

For region II, the wavefunction has a general solution of the form: Ψ(x) = C ⋅ ei⋅k2⋅x + D ⋅ e−i⋅k2⋅x, where C and D are 

constants and k2 is defined as: k2 =
√2m(E−V)

ℏ
.  

It turns out that, if E=V, then ΨII(x) = C + D ⋅ x. Can you show that this wavefunction is a solution to 
−ℏ2

2m

∂2

∂x2 Ψ(x) =

(E − V) ⋅ Ψ(x)?           (5 pts) 

13. In the previous problem of the finite barrier when E=V, we need to solve what is the probability of reflection and 

transmission. To do so, we must solve a system of four equations- the continuity and smoothness of the wavefunctions 

I & II at x=0 and the same for II and III at x=L. 

a. If ΨI(x) = A ⋅ ei⋅k1⋅x + B ⋅ e−i⋅k1⋅x and ΨII(x) = C + D ⋅ x, what are the two equations that stipulate that the 

wavefunction is continuous and smooth at x=0?        (4 pts) 

b. Now if  ΨII(x) = C + D ⋅ x and ΨIII(x) = E ⋅ ei⋅k1⋅x, what are the two equations that stipulate that the wavefunction 

is continuous and smooth at x=L?          (4 pts) 

14. Now let’s solve the equations we derived in the previous question by insert values. We have already assumed that 

E=V, and let’s use a finite value for k1 =
4π

L
. This gives us four equations to work with: 

A + B = C 

i ⋅
4π

L
⋅ A − i ⋅

4π

L
⋅ B = D 

C + D ⋅ L = E ⋅ ei⋅4π 

D = i ⋅
π

L
⋅ E ⋅ ei⋅4π 

While we can use and note that ei⋅4π = 1 to simplify the above, unfortunately, this system of four equations has 5 

unknowns (A, B, C, D, and E). However, if we want the (reflection)1/2, that is equal to the ratio of B/A. Likewise, 

(transmission)1/2 is the ratio of E/A. Using this information, we can rewrite the system of equations as: 



306 

 

1 + r = C 

i ⋅
4π

L
− i ⋅

4π

L
⋅ r = D 

C + D ⋅ L = t 

D = i ⋅
4π

L
⋅ t 

where r=B/A (the square root of the reflectance) and t=E/A (the square root of the transmission). Now you can plug 

these into the Mathematica Online system of equations solver found here: 

http://www.wolframalpha.com/widgets/view.jsp?id=ae438682ce61743f90d4693c497621b7 

and determine what r and t are. 

When you do, note that you need to take the absolute value of the results for r and t to get the real values like you did 

in question 3. For example, if you find that r =
2π

2π+i
, then: 

|r|2 = (
2π

2π+i
)
∗

(
2π

2π+i
) = (

2π

2π−i
) (

2π

2π−i
) =

4π2

4π2+1
=0.975, which is ~97.5%. Note that 1-|r|2 = |t|2.  (8 pts) 

Hint: Show me what the web site returns of r and t, and then determine the absolute values. Also I found that the 

Wolfram web site can hang, if so, hit the equal sign as indicated here. 

15. Now let’s solve the equations we derived in the previous question by insert values. We have already assumed that 

E=V, and let’s use a finite value for k1 =
2π

L
. This gives us four equations to work with: 

A + B = C 

i ⋅
2π

L
⋅ A − i ⋅

2π

L
⋅ B = D 

C + D ⋅ L = E ⋅ ei⋅2π 

D = i ⋅
π

L
⋅ E ⋅ ei⋅2π 

While we can use and note that ei⋅2π = 1 to simplify the above, unfortunately, this system of four equations has 5 

unknowns (A, B, C, D, and E). However, if we want the (reflection)1/2, that is equal to the ratio of B/A. Likewise, 

(transmission)1/2 is the ratio of E/A. Using this information, we can rewrite the system of equations as: 

1 + r = C 

i ⋅
2π

L
− i ⋅

2π

L
⋅ r = D 

C + D ⋅ L = t 

D = i ⋅
2π

L
⋅ t 

where r=B/A (the square root of the reflectance) and t=E/A (the square root of the transmission). Now you can plug 

these into the Mathematica Online system of equations solver found here: 

http://www.wolframalpha.com/widgets/view.jsp?id=ae438682ce61743f90d4693c497621b7 

and determine what r and t are. When you do, note that you need to take the absolute value of the results for r and t to 

get the real values like you did in question 3. For example, if you find that r =
π

π+i
, then: 

|r|2 = (
π

π+i
)
∗

(
π

π+i
) = (

π

π−i
) (

π

π−i
) =

π2

π2+1
=0.908, which is ~91%. Note that 1-|r|2 = |t|2.   (8 pts) 

http://www.wolframalpha.com/widgets/view.jsp?id=ae438682ce61743f90d4693c497621b7
http://www.wolframalpha.com/widgets/view.jsp?id=ae438682ce61743f90d4693c497621b7
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Hint: Show me what the web site returns of r and t, and then determine the absolute values. Also I found that the 

Wolfram web site can hang, if so, hit the equal sign as indicated here. 

 

16. For this problem we will evaluate the variance in position σx
2 =

〈x2〉 − 〈x〉2 for a wavefunction of the form: Ψ(x) =
2

L
∙ √x ∙ sin (

π

L
x) 

using the following steps:  

a. First calculate 〈x〉    (6 pts) 

b. Next calculate 〈x2〉    (6 pts) 

c. And now determine 〈x2〉 − 〈x〉2   (6 pts) 

Hint: 
1

2
−

3

2π2 − (
2

3
−

1

π2)
2

≈ 0.0284 

17. For this problem we will evaluate the variance in momentum σp
2 = 〈p2〉 − 〈p〉2 using the wavefunction: Ψ(x) =

2

L
∙ √x ∙ sin (

π

L
x) in the following steps:      

a. First determine: (
ℏ

i
)

∂

∂x
(
2

L
√x ∙ sin (

π

L
x))        (6 pts) 

b. Set up the 〈p〉 as:           (4 pts) 

〈p〉 =
4

L2
∫(√x ∙ sin (

π

L
x))

∗

(
ℏ

i
)

∂

∂x
(√x ∙ sin (

π

L
x)) ∙ ∂x

𝐿

0

 

And using your answer from pt. a you should be able to find the answer in the list of identities. 

c. Now as for:  

〈p2〉 =
4

L2
∫(√x ∙ sin (

π

L
x))

∗

(
ℏ2

i2
)

∂2

∂x2
(√x ∙ sin (

π

L
x)) ∙ ∂x

L

0

 

Unfortunately, this one requires sophisticated mathematical software to solve, from which one finds 〈p2〉 ≈
11ℏ2

L2 . From 

this you can now calculate σp
2 = 〈p2〉 − 〈p〉2?        (2 pts) 

18. If the uncertainty principal for position and momentum is: σx
2 ⋅ σp

2 ≥
1

4
|〈[x̂, p̂]〉|2~

ℏ2

4
, can you show that this 

principle is consistent with the σx
2 and σp

2  determined in the preceding two problems for Ψ(x) =
2

L
∙ √x ∙ sin (

π

L
x)? 

            (3 pts) 

 


