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Chapter 11. Boltzmann Statistics 

The Boltzmann probability distribution that was introduced in Chapter 10 has many applications 

that describe everyday physical phenomena. These include some of the thermodynamic principles such 

as the Equipartition Theorem, and why vibrations don’t account towards degrees of freedom in the 

same. Here, we will use the Boltzmann distribution to describe the lightbulb, specifically the white light 

spectrum and how energy efficient they are (hint: they are not energy efficient). Also we will study the 

heat capacity of solids, insights into which led to the development of quantum theory. 

11.1 The Black body Radiator. We will begin with exploring the marvelous complexity of the 

wonder of nature known as the lightbulb. There are some technicalities that must be employed, which is 

why this derivation is generally referred to as the “black body radiator” problem. This means that we are 

describing an object that is hot, and self-contained like an empty box. The interior is perfectly black, 

causes any photons that come into existence to be re-absorbed. The fact that light photons, which have 

an energy hν =
hc

λ
 (where h is Planck’s constant 6.626×10-34 J·s, ν is the frequency of light, c is the 

speed of light and λ is the wavelength), do not escape results in the system maintaining thermal 

equilibrium. This is sensible because, if the photons got out, the box would cool. Nonetheless, we do 

have to drill a small hole into the side to see what is going on, which means that we measure the number 

and wavelengths of all the photons inside of it as shown in Figure 11.1A. The best way to measure 

emission is to record the spectrum, which would vary with the equilibrium temperature as shown in 

Figure 11.1.B. What is interesting is how the intensity at first rises with decreasing wavelength 

(increasing energy), maximizes and then rapidly falls off. Also, the spectrum of a ~5000K black body is 

nearly identical to the sun. This gives us a hint about the first step of our approach, which is that we 

must think about what kinds of wavelengths of photons fit inside the black body box to begin with.  
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11.1.1 Wavelength.  Shown in Figure 11.2A are some representations about how light might fit 

inside the box of length L, which serves to dictate the wavelength of the box. These are the first four 

“allowed” wavelengths in the x-direction, and note how Figure 11.2.B shows that there are three 

directions since the Universe is three dimensional. Looking back to Figure 11.2.A we see that the first 

allowed photon has an infinite wavelength. While this seems odd, it is ok due to a sort of technicality 

because it has no energy and thus doesn’t actually exist. It “counts” because there can be non-zero 

wavelengths components in the y- or z- directions; this will be more clear later on. Next, we see that the 

next allowed wavelength has =2L, then L, followed by 2L/3, which clearly reveals the empirical 

relationship: 

λ =
2L

nx
, nx = 1, 2, 3…  

where nx is called the “mode number”, which represents the #nodes-1 of the confined radiation. As you 

can see, increasing the mode number shortens the wavelength and raises the energy of the photon. There 

are mode numbers in the y- and z- directions, which can form a set {nx, ny, nz} sort of like a vector. For 

example, we can describe the highest energy photon in Figure 11.2A as {3,0,0} since there are no 

components of the wavelength in the y- and z- directions. There can be, as you can have mode number 

sets such as {3,1,1} etc.   

Now that we have a relationship that defines the wavelengths, we can determine a mathematical 

function to represent them, which is proposed to be: 

E(x, y, z) = sin (
nxπ

L
∙ x) ∙ sin (

nyπ

L
∙ y) ∙ sin (

nzπ

L
∙ z) 

where E is the electric field of the photons. You can verify that these are the proper representation for 

the waves that have corresponding mode numbers such as those shown in Figure 112.  
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At this point in your academic career you should be aware that a photon is an oscillating electric 

and magnetic fields. The ability of light’s electric component to perturb objects and impart force is 

significantly greater than the magnetic field, so we usually don’t need to describe the magnetic 

properties of light. Regardless, the fact that electromagnetism has entered the discussion means that we 

now need to examine whether our relationship conforms to Maxwell’s Equations, which are  laws that 

govern all electromagnetism phenomena including light itself. As it applies here, what happens is that 

when we apply Gauss’s Law to the equation, we can derive , which is known as the wave equation. 

{
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧
}E(x, y, z, t) =

−1

𝑐2

𝜕2

𝜕𝑡2
E(x, y, z, t) 

When we insert our relationship we find: 

E(y, z, t)
𝜕2

𝜕𝑥2
sin (

nxπ

L
∙ x) + E(x, z, t)

𝜕2

𝜕𝑦2
sin (

nyπ

L
∙ y) + E(x, y, t)

𝜕2

𝜕𝑧
sin (

nzπ

L
∙ z) = E(x, y, z)

1

𝑐2

𝜕2

𝜕𝑡2
sin (

2πc

λ
∙ t) 

We can evaluate terms such as: 

E(y, z, t)
∂2

∂x2
sin (

nxπ

L
∙ x) = −

nx
2π2

L2
E(x, y, z, t) 

Which makes: 

E(x, y, z, t) {
nx

2π2

L2
+

ny
2π2

L2
+

nz
2π2

L2
} = E(x, y, z, t)

4π2

λ2
 

The equation for the electric field can be divided out on the left and right sides leaving: 

π2

L2
(nx

2 + ny
2 + nz

2) =
4π2

λ2
 

If we simply treat the mode set like a vector, which has a net value: 

n2 = nx
2 + ny

2 + nz
2 

then the above simplifies to: 

λ2 =
4L2

n2
 or λ =

2L

n
 

One important aspect of this result is that it demonstrates that mathematical models can tell us more than 

what the model is. 

11.1.2 Mode Degeneracy. We now can relate the wavelengths that fit inside the box to the net 

mode number n. These values are discrete, since n is composed of a combination of whole numbers as 

shown in Table 11.1. To visualize, we can think of the spectrum of emission as being composed of posts 

that can accommodate a stack disks; each post is positioned to represent an allowed wavelength, and the 

disks are photons that reside at those wavelengths. Technically, each post can hold one disk, and each 

disk represents two photons since light comes right and left circularly polarized form. This idea is 
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illustrated in Figure 11.3. However, there is a slight complication. Take for example that for the net 

mode number of n = 1 corresponding to a wavelength of λ = 2L. There are actually three sets of {nx, ny,  

n2 =  
nx

2 + ny
2 + nz

2 
{nx,ny,nz} Number of sets 

(degeneracy) 

1 {1,0,0},{0,1,0},{0,0,1}  3 

2 {1,1,0},{0,1,1},{1,0,1} 3 

3             {1,1,1}  1 

4 {2,0,0},{0,2,0},{0,0,2} 3 

5 {0,1,2},{0,2,1},{1,0,2}, 
{2,0,1},{1,2,0},{2,1,0} 

6 

6 {1,1,2},{1,2,1},{2,1,1} 3 

7 No examples - 

8 {2,2,0},{0,2,2},{2,0,2} 3 

9 {1,2,2},{2,1,2},{2,2,1}, 
{0,0,3},{0,3,0},{3,0,0} 

6 

10 {0,1,3},{0,3,1},{1,0,3}, 
{3,0,1},{1,3,0},{3,1,0} 

6 

⋮ ⋮ ⋮ 
10,800 {60,60,60},{20,76,68},… 28 

⋮ ⋮ ⋮ 
24,300 {90,90,90},... 91 

Table 11.1. How net mode numbers n2 can be composed of multiple whole number {nx, ny, nz} sets. 

nz} that given = 1; they are {1,0,0}, {0,1,0} and {0,0,1}. Likewise a mode number of  n = √2 can also 

come about from three sets, {1,0,1}, {1,1,0} and {0,1,1}. However,  n = √3 can only come about from 

{1,1,1}, and there is no combination of whole mode numbers that provide n = √7. 

The reason that the emission 

spectrum initially rises with 

decreasing wavelength as seen in 

Figure 11.1B is because of how the 

number of sets that yield the same 

net mode number is generally 

increasing as seen in Table 11.1 and 

Figure 11.3. Since the net mode 

number corresponds to a specific 

wavelength and thus energy of light, 

the number of sets is the degeneracy 

of the energy state. Now our 

purpose here is to generate a 
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relationship between the net mode number and the degeneracy.   

 Unfortunately, as can be seen in Table 11.1 there isn’t a simple formula that can take n or n2 as 

an input and generate the degeneracy as the output. This can be visualized in 2D as shown in Figure 

11.4, where we represent n as the radius of a circle on a graph of ny vs. nx. Each red cross represents 

distinct mode set, but we can see that a semi-circle of radius n doesn’t cross many of them. In fact, it 

doesn’t seem clear that there is a simple formula that relates the net mode number n to the number of 

nearby modes. However, as shown in Figure 11.4B, any particular point {nx, ny} is offset from every 

other point by nx = ±1 and/or ny = ±1. As a result, we can say that each mode number occupies an 

area on the graph of 12 = 1. Since one point occupies an area of 1, we now have a way to count up 

mode sets as a function of the net mode number n. This is easy because n looks just like a radius when 

plotted against nx and ny as in Figure 11.4C, and we can define an area associated with n using a quarter 

disk with a thickness of ∂n. Hence the degeneracy for the 2D system can be calculated via the area of a 

quarter disk, which is the circumference times the thickness: 

2D degeneracy(n) = (
1

4
) 2πn ∙ ∂n 

Of course, we live in three dimensions. Since 13 = 1, we can imagine that the 3D degeneracy can be 

calculated by volume. In fact, if the number of degeneracies in 2D is 1/4th the area of a disk, then for 3D 

the degeneracy is 1/8th the volume of a shell:  

3D degeneracy(n) = (
1

8
) 4πn2 ∙ ∂n 

where the shell volume is the surface area of a sphere (4πn2) times the shell’s thickness ∂n. To make 

further progress we have to remove the mode number n and insert , since spectrometers report on 
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wavelength. Earlier, when we applied Maxwell’s equations to the equation for the electric field of light 

we found that: λ2 =
4L2

n2  and therefore n2 =
4L2

λ2 . Making this substitution into the above reveals: 

3D degeneracy(n) = (
1

8
) 4π

4L2

λ2
 ∙ ∂n =

2πL2

λ2
 ∙ ∂n 

Two more problems; we have to multiply the above by 2 to represent the fact that light has both left and 

right circularly polarized forms. Also, we have to convert ∂n to ∂λ using a Jacobian: ∂n → |
∂n

∂λ
| ∂λ: 

3D degeneracy(λ) = 2 ×
2πL2

λ2
 ∙ |

∂n

∂λ
| ∂λ =

4πL2

λ2
 |
∂
2L
λ

∂λ
| ∂λ =

8πL3

λ4
 ∂λ 

This is the analytical result plotted in Figure 11.3. Ultimately, we see that shorter wavelength photons 

“fit” into the black box better and thus have more degeneracies, which increases the light output from a 

bulb as seen in Figure 11.1.B. However, if the wavelength becomes too short then the intensity of light 

drops off, which is to say that there appears to be some sort of high energy cutoff. This suggests that the 

Boltzmann equation plays a role, since nature doesn’t partition out energy into things if that energy is 

greater than kBT.   

11.1.3 Total Energy.  Now that we have an expression for the degeneracy of light modes in the 

black body radiator, we can now calculate the total energy from a lightbulb using: 

Total Energy = ∑degeneracy(λ) ∙ 〈energy(λ)〉

λ

 

Here we see that we need to calculate the average energy of the lightbulb’s mode as a function of the 

mode’s wavelength, 〈energy(λ)〉. We are already well aware that the energy of a photon is 
h⋅c

λ
, and with 

this we can apply the Boltzmann equation to calculate the average. A subtlety is revealed at this point- 

how is the energy of the photon dialed up or down to conform to the Boltzmann equation? Afterall, to 

calculate the energy at a defined wavelength using 
h⋅c

λ
, everything is a constant (h is the Plank constant, 

6.626×10-34 J∙s, and c is the speed of light)! It turns out that the Boltzmann formula is satisfied by 

varying the number of photons, to which we now use in the equation: 

P (
j ∙ h ⋅ c

λ
) =

e
−Energy

k⋅T
⁄

∑e
−Energy

k⋅T
⁄

=
e
−j⋅h⋅c

λ⋅kBT⁄

∑ e
−i⋅h⋅c

λ⋅kBT⁄∞
i=0

 

where P (
j∙h⋅c

λ
) is the probability density for having j photons of wavelength λ given temperature T. First 

thing we do is to solve the normalizer (i.e. the denominator), ∑ e
−i⋅h⋅c

λ⋅kBT⁄∞
i=0 . The summation reflects 
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the fact that Nature can dictate that there are as little as 0 photons and as many as ∞. To solve this part, 

we can use the following identity:  

∑ai

∞

i=0

=
1

(1 − a)
; i = 0,1,2,3… 

This works because the number of photons is discrete, i.e. there can only be whole numbers (0, 1, 2, 3, 

…) of them. Applying the identity means: a = e
−h⋅c

λ⋅kBT⁄
, which makes: 

∑e
−i⋅h⋅c

λ⋅kBT⁄

∞

i=0

=
1

(1 − e
−h⋅c

λ⋅kBT⁄
)
 

Now we can try to deal with the average energy via: 

〈energy〉 = ∑energy ∙ Boltzmann distribution = ∑(
j ⋅ h ⋅ c

λ
) ∙ (1 − e

−h⋅c
λ⋅kBT⁄

) e
−j⋅h⋅c

λ⋅kBT⁄

∞

j=0

 

where: (
j⋅h⋅c

λ
) is the energy of a j number of −wavelength photons and: (1 − e

−h⋅c
λ⋅kBT⁄

) e
−j⋅h⋅c

λ⋅kBT⁄
 is 

the normalized Boltzmann distribution. To solve the expression above we use the following identity: 

∑i ⋅ ai

∞

i=0

=
a

(1 − a)2
;  i = 0,1,2,3… 

Applying the identity above to ∑ (
j⋅h⋅c

λ
) ∙ e

−j⋅h⋅c
λ⋅kBT⁄

∙ (1 − e
−h⋅c

λ⋅kBT⁄
)∞

j=0 , we need to identify the 

constants: 
h⋅c

λ
∙ (1 − e

−h⋅c
λ⋅kBT⁄

) and: a = e
−h⋅c

λ⋅kBT⁄
. Thus, the average energy is: 

∑(
j ⋅ h ⋅ c

λ
) ∙ e

−j⋅h⋅c
λ⋅kBT⁄

∙ (1 − e
−h⋅c

λ⋅kBT⁄
)

∞

j=0

= (
h ⋅ c

λ
) ∙ e

−h⋅c
λ⋅kBT⁄

∙
(1 − e

−h⋅c
λ⋅kBT⁄

)

(1 − e
−h⋅c

λ⋅kBT⁄
)
2 

This is: 

〈energy〉 = (
h ⋅ c

λ
) ∙

e
−h⋅c

λ⋅kBT⁄

(1 − e
−h⋅c

λ⋅kBT⁄
)
 

Now we can simplify further by this neat trick of multiplying the top and bottom by e
h⋅c

λ⋅kBT⁄
: 

(
h ⋅ c

λ
) ∙

e
−h⋅c

λ⋅kBT⁄

(1 − e
−h⋅c

λ⋅kBT⁄
)
∙
e
h⋅c

λ⋅kBT⁄

e
h⋅c

λ⋅kBT⁄
= (

h ⋅ c

λ
) ∙

e0

(e
h⋅c

λ⋅kBT⁄
− e0)

=
h ⋅ c

λ ∙ (e
h⋅c

λ⋅kBT⁄
− 1)

 

Done! The average energy of a -wavelength photon is:  
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〈energy(λ)〉 =
h ⋅ c

λ ∙ (e
h⋅c

λ⋅kBT⁄
− 1)

 

This result is plotted in Figure 11.5, where we can see 

that the average energy rises with increasing 

wavelength. This is sensible, because if the energy of 

a photon is on the order of kBT (or less), Nature 

allows you to have more of those photons.  

We can now finally solve for the total energy 

output of a lightbulb and calculate the spectrum at the 

same time. Shown in Figure 11.5 is a representation 

of the average energy as a stack of discs that 

correlates to the number of photons. The modes and 

degeneracies of the blackbody were previously 

presented as a series of posts to stack the photon discs 

on. Now we see the reason that a lightbulb’s spectrum 

rises and falls with increasing wavelength- Nature 

provides the energy to create more photons as the 

energy per photon drops with increasing wavelength. 

However, the photons must also reside in blackbody 

radiator modes, which decrease with increasing 

wavelength. The result is a rise and fall of intensity, 

which mimics the spectra shown in Figure 11.1.  

Now to create a mathematical representation of the same. First, we return to our original 

expression for the total energy: 

Total Energy = ∑degeneracy(λ) ∙ 〈energy(λ)〉

λ

 

Technically, the above result is dependent on the volume of the lightbulb, as a bigger bulb produces 

more energy. We should instead present the result as the energy density, the total energy divided by the 

volume, which can be applied to any sized black box radiator: 

Energy Density =
Total Energy

Volume
=

1

L3
∑degeneracy(λ) ∙ 〈energy(λ)〉

λ
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We insert the relationships derived above, and then we can approximate the wavelengths as varying 

continuously. This allows us to change the sum to an integral; we also do some algebraic cleaning: 

Energy Density = (
1

L3
)∫ (

8πL3

λ4
) ∙

h ⋅ c

λ ∙ (e
h⋅c

λ⋅kBT⁄
− 1)

∙

∞

0

𝜕𝜆 = ∫
8π ∙ h ⋅ c

λ5 ∙ (e
h⋅c

λ⋅kBT⁄
− 1)

∙

∞

0

𝜕𝜆 

where the expression: 

8π ∙ h ⋅ c

λ5 ∙ (e
h⋅c

λ⋅kBT⁄
− 1)

 

is known as the Planck distribution and is exactly what is plotted in Figure 11.1B. Last, we evaluate the 

integral above, which unfortunately is rather difficult and requires a bit of sophistication to derive. 

Regardless, the result is:  

8π5(kBT)4

15(h ∙ c)4
 

and is known as the Stefan–Boltzmann law.  

11.2 Heat Capacity of Solids. In the 

early 1800’s French scientists Pierre Dulong 

and Alexis Petit noticed that many solid 

elements had near-identical per molar heat 

capacities as shown in Figure 11.6. This led to 

the Dulong–Petit law: Cm = 3R. Previously in 

Ch. 2 we encountered gases with such high 

heat capacities due to their three translational 

and three rotational motions, which imparts six 

degrees of freedom that rendered Cm = 3R due 

to the equipartition theorem (Table 2.1). While 

this is perfectly understandable for a gas, it’s hard to reconcile why heavy metallic elements such as lead 

and a gas such as methane have the same heat capacities. The answer is simple- solids have three 

(vibrational) potential energy and three kinetic energy degrees of freedom due to their bonding.  Thus, 

the equipartition theorem still appears valid for solids, unless, those solids are cold, in which case 

something goes terribly wrong as shown in Figure 11.7. 

From the data in Figure 11.7 we can see that, at low temperatures, solids of copper and tungsten 

have almost no heat capacity! And while it rises with temperature to the Dulong-Petit limit, it was quite 
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the curiosity for many years why this behavior 

was observed in many materials. In fact, it was 

one of Albert Einstein’s early contributions in 

1907 to approximately describe the increase in 

heat capacity as vibrations in the solid state, 

called phonons, that behave just like Planck’s 

photons. In this regard, instead of energy being 

related to the wavelength of light it was due to 

the frequency of an atomic vibration in the solid 

state. All one has to do is simply change the 

definition of average internal energy (U), as 

derived from the Boltzmann formula, from the 

Planck to the Einstein form: 
h⋅c λ⁄

eℏ⋅c λkBT⁄ −1
→ 3𝑁𝐴 ∙

ℏω

eℏω kBT⁄ −1
. The prefactor is due to solids existing in 3 dimensions and that a mole has 𝑁𝐴 number of 

atoms, and note that Einstein assumed that all the vibrations inside the solid had the same frequency ω.  

Since heat capacity is just the derivative of the internal energy with temperature, the result is:  

C = 3NA ∙
∂

∂T
(

ℏω

eℏω kBT⁄ − 1
) = 3NA ∙

−ℏω

(eℏω kBT⁄ − 1)2

∂eℏω kBT⁄

∂T
= 3NA ∙

−ℏω

(eℏω kBT⁄ − 1)2

−ℏω

kBT2
eℏω kBT⁄

= 3NAkB (
ℏω

kBT
)
2 eℏω kBT⁄

(eℏω kBT⁄ − 1)2
 

This result correctly predicts that, as T→0 K, the heat capacity also →0 J/K/mol. At higher temperatures 

where: eℏω kBT⁄ ~1 +
ℏω

kBT
 we find that: 

C~3NAkB (
ℏω

kBT
)
2 1 +

ℏω
kBT

(
ℏω
kBT

)
2 ~3NAkB (

ℏω

kBT
)
2

(
kBT

ℏω
)
2

= 3NAkB = 3R 

All of these results make us believe that Einstein has the correct approach; however, this turns out not to 

be the case! The problem is that the heat capacity rises exponentially in the Einstein model whereas in 

reality most materials have a Cp,m~T3 behavior. And as shown by Peter Debye in 1912 this was due to 

Einstein’s use of a single frequency for the solid-state vibrations, whereas there are a range of 

frequencies as shown in the inset of Figure 11.7.  
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 The solution to address concerning the shortcoming of the Einstein model is to use a range of 

phonon frequencies to define the internal energy as so: 

U = ∫degeneracy(ω) ∙ 〈energy(ω)〉 = ∫degeneracy(ω) ∙
ℏω

eℏω kBT⁄ − 1
𝜕ω 

So as not to labor the point one can show that the degeneracy of phonons as a function of frequency is 

𝑉𝜔2

2𝜋2𝑣𝑠
3, where 𝑣𝑠 is the speed of sound in the solid. As a result the Debye equation for the heat capacity of 

a solid is: 

C =
∂U

𝜕𝑇
=

∂

𝜕𝑇

𝑉𝜔2

2𝜋2𝑣𝑠
3 ∫

𝑉𝜔2

2𝜋2𝑣𝑠
3

ℏω

eℏω kBT⁄ − 1
𝜕ω

ω𝐷

0

∝ 𝑇3 

While we don’t need to worry further about the mathematics of the result, suffice to say the result is 

proportional to T3 as experimentally observed. It is also interesting to note that the upper limit of the 

Debye equation isn’t infinity as one might expect. This is because Debye realized that there was an 

upper limit to the range of phonon frequencies as shown in Figure 11.8, which we will call the Debye 

frequency ω𝐷. Clearly, there cannot be a frequency higher than allowed by the atomic spacing. In 

practice, this upper limit is an empirical parameter that can be used to create a fit to experimental data.  

 

Conclusion. The purpose of this chapter was to demonstrate that the Boltzmann formula has uses far 

beyond that encountered with the Maxwell-Boltzmann description of the velocities of gases. In terms of 

the development of physical chemistry as a science, it wasn’t long after the phenomena of Blackbody 

radiation and the Debye theory of heat capacity were described that scientists started to make the 
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connection between matter and waves. This ultimately resulted in quantum theory, which is the subject 

of the next chapter.   
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Problems: Numerical 

1. a. Write Plank’s constant (h=6.626×10-34 J·s) in units of kg, m, and s.      (2 pts) 

b. What are the unit(s) of c·h/?           (2 pts) 

c. What are the unit(s) of momentum squared over mass?        (2 pts) 

d. What are the unit(s) of Plank’s constant squared over mass over length squared?    (2 pts) 

2. a. What is the de Broglie wavelength of Donald Trump, a 210 kg man who can 

run 1.0 m/s when chased by a mob at the Capitol?    (3 pts) 

b. What was the de Broglie wavelength of Secretariat, a 544 kg horse that could run 

21.9 m/s? I’m using the past tense because the horse is dead. He’s dead. 

        (3 pts) 

3. a. What is the de Broglie wavelength of Ted Cruz, a 100 kg man who can run 0.5 

m/s when chased by a mob at the Capitol?          (3 pts) 

b. What was the de Broglie wavelength of Secretariat, a 544 kg horse that could run 21.9 m/s? I’m using the past tense because 

the horse is dead. He’s dead.          (3 pts) 

4. Let’s learn about a new unit- the electron Volt (eV). This is the energy an electron 

picks up by travelling across two metal plates, one at 0 V and the other at +1.0 V. 

The electron will accelerate towards the +1.0 V, picking up kinetic energy. Actually, 

it picks up 1.0 eV of kinetic energy to be exact! (rest mass of an electron is 

m0 =9.109 ×10-31 kg and the speed of light is c=3×108 m/s).  

a. If the conversion of J to eV is 1.6×10-19 (J/eV
), how fast is an electron going once it 

passes through a +1.0 V plate?     (3 pts) 

b. What is interesting is that the mass of an electron is dependent on how fast it is 

moving (thanks Einstein!) If the mass of the moving particle is: m = (1 −
v2

c2)
−1

2⁄

⋅

m0, where c is the speed of light and m0 is the “rest mass” of the electron (9.109×10-31 kg), does the mass of the 1 eV 

electron change much?            (3 pts) 

c. What speed would an electron have to travel to have a mass that is 10% higher than its rest mass? How many eV is that? 

             (7 pts) 

Hint: for pt. c if you calculated 44.5 keV you forgot to account for the mass increase.  

5. The length between chemical bonds is ~1 Å. To perform diffraction studies on bonds, you would practically need to use a 

particle with a wavelength that is about 1/100th this value, i.e. 1×10-12 m.  

a. What speed do you need to make electrons travel at to give them this wavelength such that they can be used in diffraction 

experiments for elucidating the structure of molecules? Hint: λ =
h

m⋅v
.  Also the electron rest mass is 9.109 ×10-31 kg. 

             (3 pts) 
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b. Look really closely at your answer to pt. a, and you will find that there is a major problem with the speed you calculated. 

What it wrong with it?            (2 pts) 

c. Now if an electron is travelling 2.77 ×108 m/s (which is less than the speed of light) and the mass increases according to: 

m = (1 −
v2

c2)
−1

2⁄

⋅ m0, what is the de Broglie wavelength of the particle travelling at this speed?   (5 pts) 

Problems: Theoretical or Explain in Words  

1. The correct equation that Einstein derived for the energy from the theory of relativity is not E=mc2, rather E2=p2·c2 + m2·c4 

(m is mass, c is the speed of light).  

a. What assumption allows you to say E=m·c2?         (2 pts) 

b. If energy of light is E=c·h/, can you derive what the momentum of light is, i.e. p = ?    (3 pts) 

pt. b. hint: photons have no mass, so E2 = p2·c2  

2. A complex number is defined as having √−1 in it, where we abbreviate i = √−1. Hence “3i” 

is a complex number, and (3i)2 = 32·i2 = -9. A complex number can generally be expressed as: 

z = a + i ⋅ b. Its absolute value |z| is: |z| = √a2 + b2; it works just like a vector!  

Last thing, the complex conjugate of z, which we call z∗, is defined as: z∗ = a − i ∙ b.  

a. Can you prove that, for z = a + i ⋅ b, then z∗ ⋅ z = |z|2 ?    (3 pts) 

b. Let’s make an equivalency between z = a + i ⋅ b and z = |r| ∙ eiϕ using the figure provided 

here. To answer this question, please define |r| and ϕ using a and b. FYI, the purpose of this question is to make you comfortable 

with Googling math identities.           (3 pts) 

c. Please use the FOIL method to evaluate: z2 = (a + i ⋅ b)2.       (3 pts) 

d. If you had to evaluate z50, which representation of z (i.e., z = a + i ⋅ b or z = |r| ∙ eiϕ) would you use and why? (3 pts) 

3. More math practice. A complex function ψ has “i” in it, and the complex conjugate of ψ is the same thing where every “i” 

is replaced with “-i”. For example, if ψ(x) = i ⋅ sin(−i ⋅ kx), then ψ∗(x) = −i ⋅ sin(i ⋅ kx). Here is another: –i* = –(-i) = i.  

a. If ψ(ϕ) = sin(ϕ), what is ψ(ϕ) ∙ ψ∗(ϕ)?         (3 pts) 

b. If ψ(ϕ) = eiϕ, what is ψ(ϕ) ∙ ψ∗(ϕ)? Please simplify the product and provide one answer.  

(fyi eaeb = ea+b)            (3 pts) 

c. If ψ(ϕ) = eiϕ ∙ sin(ϕ), what is ψ(ϕ) ∙ ψ∗(ϕ)?        (3 pts) 

4. More math practice. A complex function ψ has “i” in it, and the complex conjugate of ψ is the same thing where every “i” 

is replaced with “-i”. For example, if ψ(x) = i ⋅ sin(−i ⋅ kx), then ψ∗(x) = −i ⋅ sin(i ⋅ kx). You see, everywhere the “i” 

appeared, we wrote “-i” instead. Here is another: –i* = –(-i) = i.  

a. If ψ(ϕ) = cos(ϕ), what is ψ(ϕ) ∙ ψ∗(ϕ)?        (3 pts) 

b. If ψ(ϕ) = eiϕ, what is ψ(ϕ) ∙ ψ∗(ϕ)? Please simplify the product and provide one answer.  

(fyi eaeb = ea+b)            (3 pts) 
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c. If ψ(ϕ) = eiϕ ∙ cos(ϕ), what is ψ(ϕ) ∙ ψ∗(ϕ)?        (3 pts) 

5. Even more math practice! Perform the following operations. Oh, I’m sorry I didn’t say that right. Perform the following 

operations please. 

a. 
∂

∂x
⋅

∂

∂x
⋅ x ⋅ cos (kx)  b. 

∂

∂x
⋅ x ⋅

∂

∂x
⋅ cos (kx)  c. 

∂

∂x
⋅
1

x
⋅

∂

∂x
⋅ ei⋅k⋅x    (9 pts) 

Hint: Look at some of the identities at the top of the problem set! 

6. Even more math practice! Perform the following operations. Oh, I’m sorry I didn’t say that right. Perform the following 

operations please. 

a. 
∂

∂x
⋅

∂

∂x
⋅ x ⋅ sin (kx)  b. 

∂

∂x
⋅ x ⋅

∂

∂x
⋅ sin (kx)  c. 

∂

∂x
⋅
1

x
⋅

∂

∂x
⋅ e−i⋅k⋅x   (9 pts) 

7. Light has two “natural” forms- right and left circularly polarized. This comes about because light has angular momentum, 

specifically ℓ = 1, where ℓ is the angular momentum quantum state (like how the hydrogen s-state has ℓ = 0 and p states have 

ℓ =1, remember this?). This is why the selection rule ℓ = ±1 for absorption of light exists (i.e. why s-states absorb light and 

turn into p-states; this conserves angular momentum!). Here is another fact: if ℓ > 0, then there are 2ℓ + 1 “sub” quantum states 

mℓ that range from: mℓ = {-ℓ, (-ℓ +1), …, 0, …, +ℓ} (you learned this in Freshman Chem). For a hydrogen p-state with quantum 

state ℓ =1, you have three mℓ = {-1, 0, 1} states, which is where the three px, py, and pz orbitals come from!  

If light has angular momentum and is in quantum state ℓ =1, then there must be three mℓ = {-1, 0, +1} states. Actually, there 

are, but just two of them- specifically, mℓ = +1, which is what we call left circularly polarized light, and mℓ  = -1, which is right 

circularly polarized light. But there is no mℓ = 0 state!  

Now here is the question- why is that the case? Here are two figures for right and left circularly polarized light that will help 

you, where you can see how the electric field rotates around the axis of propagation:    (5 pts) 

 

 

Right: Left:  

 

 

Hint: In the mℓ =0 case, the photon rotates by moving forward and backward in line with the direction of propagation. 

8. The solution to Ampere’s Law in 3D: 
∂2E⃗⃗ 

∂x2 +
∂2E⃗⃗ 

∂y2 +
∂2E⃗⃗ 

∂z2 =
1

c2

∂2E⃗⃗ 

∂t2
 is: E⃗⃗ = f(x) ⋅ f(y) ⋅ f(z) ⋅ f(t), 

where the time dependent function is: f(t) = sin (2π ⋅ c ⋅
t

λ
)  

a. What does c·t represent? b. What are the units of c ⋅
t

λ
? c. Why is there a 2? 

d. Now, summarize why the argument of the sine function: 2π ⋅ c ⋅
t

λ
 makes sense.    (8 pts) 
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9. Here we will calculate the population distribution of COVID patients as a 

function of the number of low-income citizens (NP).  The map shown here 

will help you understand the variables.  

a. First, it is determined that the number of COVID cases changes with the 

geographic location (x, y), the population (pop), area A and number of low-

income people (NP) according to the following: 

Cases(𝐱, 𝐲, 𝐩𝐨𝐩) = f(𝐱) ⋅ f(𝐲) ⋅ f(𝐩𝐨𝐩)

= sin (
nxπ

√A
⋅ 𝐱) ⋅ sin (

nyπ

√A
⋅ 𝐲) ⋅ sin (

2π

NP
⋅ 𝐩𝐨𝐩) 

Here, nx and ny represent the number of boundaries between the rich and poor 

neighborhoods. The function Cases(𝐱, 𝐲, 𝐩𝐨𝐩) is the solution to the following differential equation: 

∂2

∂𝐱2
Cases(𝐱, 𝐲, 𝐩𝐨𝐩) +

∂2

∂𝐲2
Cases(𝐱, 𝐲, 𝐩𝐨𝐩) =

∂2

∂𝐩𝐨𝐩2
Cases(𝐱, 𝐲, 𝐩𝐨𝐩) 

Please use this differential equation and the formula for Cases to demonstrate:     (7 pts) 

 nx
2 + ny

2 =
4 ⋅ A

NP2
 

Hint: the first term is: 
∂2Cases

∂𝐱2 =
∂2 sin(

nxπ

√A
⋅𝐱)

∂𝐱2 ∙ f(𝐲) ⋅ f(𝐩𝐨𝐩) = −(
nx
2π2

A
) ⋅ f(𝐱) ⋅ f(𝐲) ⋅ f(𝐩𝐨𝐩)    

b. We can simplify the result from pt. a: nx
2 + ny

2 =
4⋅A

NP2 as: n2 =
4⋅A

NP2. Next, we learn from the County Health office that the 

number of hospital beds available to the population is:  

Beds(n) = (
1

4
) 2πn ∙ ∂n 

Can you convert this into the number of beds available as a function of the size of the low-income population? Meaning, convert 

 Beds(n) into Beds(NP) given that n2 =
4⋅A

NP2?         (7 pts) 

Hint: You need to use a Jacobian: ∂n = |
∂n

∂NP
| ∂NP.  

c. When you multiply the number of available hospital beds: Beds(NP) with the average number of COVID patients as a 

function of the size of the low-income population: 〈P(NP)〉 =
1

NP∙(e
1000

NP⁄ −1)
 

you arrive at the COVID patient distribution: 

Beds(NP) ∙ 〈P(NP)〉 =
2π ∙ A

NP3

1

NP ∙ (e
1000

NP⁄ − 1)
∂NP

=
2π ∙ A

NP4 (e
1000

NP⁄ − 1)
∂NP 
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A graph of the above distribution is shown. Can you describe why the graph rises and falls as it does? Please explain the answer 

as though you were speaking to a middle school student. For example, don’t you already know how COVID affects low-income 

earners disproportionately? What kind of access to medical care to low-income people have? Discuss how these are related to 

the equations developed.            (5 pts) 

d. What would integrating the result in pt. c yield? Note you don’t have to actually integrate it, just describe what the numerical 

result would mean as though you were speaking to a middle school 

student.       (3 pts) 

10. Now let’s repeat what we did with problem #9 for lightbulbs. 

We determined that the Boltzmann equation’s normalizer for the 

blackbody radiator problem is: 

Norm = {1 − e
−hc

λ∙kBT}

−1

 

Please evaluate (kBT)2 ∂ln(Norm)

∂(kBT)
 to show that it is the same as the 

average energy.     (10 pts) 

Hint: You have the correct equation for the average energy from 

class and Ch. 12 of “Free Energy”. Also you will need to use the 

following identity: 
∂

∂x
ln (1 − e

−a

x ) = −
a

x2(e
a
x−1)

 

11. When people were first working on the blackbody radiator problem they thought to use the Equipartition theorem to 

calculate the energy of a photon:  

〈E〉 =
kBT

2
∙ degrees of freedom 

The number of degrees of freedom is 2 for a photon because they can be left- or right-circularly polarized. Consequently, the 

blackbody intensity distribution would be:  

Modes(λ) ∙ 〈E〉 =
8πL3

λ4
∙ kBT ∙ ∂λ 

This is called the Rayleigh-Jeans law, which isn’t correct as can be demonstrated by calculating the total energy output of the 

object via integration:  

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 = ∫
8πL3

λ4
∙ kBT ∙ ∂λ

∞

0

 

a. What do you get when you evaluate ∫
8πL3

λ4 ∙ kBT ∙ ∂λ
∞

0
?       (3 pts) 

You may need to use an on-line integrator: 

https://www.wolframalpha.com/widgets/view.jsp?id=8ab70731b1553f17c11a3bbc87e0b605 

FYI, if the on-line thing states “does not converge”, then the answer is ∞. 

b. The problem encountered with the answer with pt. a was called the “Ultraviolet Catastrophe”. Why do you think they called 

the result that?             (3 pts) 

https://www.wolframalpha.com/widgets/view.jsp?id=8ab70731b1553f17c11a3bbc87e0b605
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12. There is an idea that quantum mechanical expressions should turn into classical ones under some limit. For example, the 

quantum Planck distribution: 
8πL3

λ5 ∙
hc

(e
hc

λkBT⁄
−1)

 should turn into the classical Rayleigh-Jeans one: 
8πL3

λ4 ∙ kBT. But how?   

a. First, look at the e
hc

λkBT⁄
 term, and use this identity: ex = 1 + x +

x2

2!
+

x3

3!
… to simplify it to the 2nd term (i.e. do this: ex ≈

1 + x). This simplification is valid if λ is very very long.        (7 pts) 

b. Now plug in your answer above into  
8πL3

λ5 ∙
hc

(𝐞
𝐡𝐜

𝛌𝐤𝐁𝐓⁄
−1)

 and simplify it- what do you have?   (7 pts) 

c. What one finds is that all quantum mechanical equations have “h” in them, but classical equations never do. Thus, the 

Rayleigh-Jeans law is “classical” because it doesn’t have Planck’s constant. It also correctly describes the lightbulb for long 

wavelengths, but not short ones as shown here. Now, you may be wondering what the question is. There isn’t one- did you 

notice how many points this question is worth?              (  pts) 

 


